scholarly journals [rac-1,8-Bis(2-carbamoylethyl)-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane]copper(II) diacetate tetrahydrate: crystal structure and Hirshfeld surface analysis

Author(s):  
Sabina Yasmin ◽  
Saswata Rabi ◽  
Avijit Chakraborty ◽  
Huey Chong Kwong ◽  
Edward R. T. Tiekink ◽  
...  

The title CuII macrocyclic complex salt tetrahydrate, [Cu(C22H46N6O2)](C2H3O2)2·4H2O, sees the metal atom located on a centre of inversion and coordinated within a 4 + 2 (N4O2) tetragonally distorted coordination geometry; the N atoms are derived from the macrocycle and the O atoms from weakly associated [3.2048 (15) Å] acetate anions. Further stability to the three-ion aggregate is provided by intramolecular amine-N—H...O(carboxylate) hydrogen bonds. Hydrogen bonding is also prominent in the molecular packing with amide-N—H...O(amide) interactions, leading to eight-membered {...HNCO}2 synthons, amide-N—H...O(water), water-O—H...O(carboxylate) and water-O—H...O(water) hydrogen bonds featuring within the three-dimensional architecture. The calculated Hirshfeld surfaces for the individual components of the asymmetric unit differentiate the water molecules owing to their distinctive supramolecular association. For each of the anion and cation, H...H contacts predominate (50.7 and 65.2%, respectively) followed by H...O/O...H contacts (44.5 and 29.9%, respectively).

Author(s):  
Balakrishnan Rajeswari ◽  
Radhakrishnan Santhi ◽  
Palaniyappan Sivajeyanthi ◽  
Kasthuri Balasubramani

The title molecular salt, C10H13N2 +·C2H3O2 −·0.5H2O, crystallized with four 2-(1H-indol-3-yl)ethanaminium cations (A, B, C and D) and four acetate anions in the asymmetric unit, together with two water molecules of crystallization. Each cation is linked to an anion by a C—H...π interaction. The alkylaminium side chains have folded conformations, with N—C—C—C torsion angles of −58.5 (3), 59.5 (3), −64.6 (3) and −56.0 (3)° for cations A, B, C and D, respectively. In the crystal, the cations and anions are liked by N—H...O and C—H...O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked by the water molecules via Owater—H...O and N—H...Owater hydrogen bonds, forming layers lying parallel to the bc plane. The overall intermolecular interactions were investigated using Hirshfeld surfaces analysis.


Author(s):  
Rima Laroum ◽  
Assia Benouatas ◽  
Noudjoud Hamdouni ◽  
Wissame Zemamouche ◽  
Ali Boudjada ◽  
...  

The title compound, C9H7NO2S crystallizes with two independent molecules (A and B) in the asymmetric unit with Z = 8. Both molecules are almost planar with a dihedral angle between the isoxazole and thiophen rings of 3.67 (2)° in molecule A and 10.00 (1) ° in molecule B. The packing of molecules A and B is of an ABAB... type along the b-axis direction, the configuration about the C=C bond is Z. In the crystal, the presence of C—H...O, C—H... N and π–π interactions [centroid–centroid distances of 3.701 (2) and 3.766 (2) Å] link the molecules into a three-dimensional architecture. An analysis of Hirshfeld surfaces shows the importance of C—H...O and C—H...N hydrogen bonds in the packing mechanism of the crystalline structure.


Author(s):  
Ming Yueh Tan ◽  
Karen A. Crouse ◽  
Thahira B. S. A. Ravoof ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

Two independent molecules (AandB) comprise the asymmetric unit of the title compound, C18H21N3O3. The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN2O urea core [dihedral angles = 25.57 (11) (A) and 29.13 (10)° (B)]. The second amine is connected to an imine (Econformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intramolecular amine-N—H...N(imine) and hydroxyl-O—H...O(methoxy) hydrogen bonds closeS(5) loops in each case. The molecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) (A) and 48.55 (7)° (B). In the crystal, amide-N—H...O(amide) hydrogen bonds link the moleculesAandB viaan eight-membered {...HNCO}2synthon. Further associations between molecules, leading to supramolecular layers in theacplane, are hydrogen bonds of the type hydroxyl-O—H...N(imine) and phenylamine-N—H...O(methoxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C—H...O(hydroxy) interactions. A detailed analysis of the calculated Hirshfeld surfaces shows moleculesAandBparticipate in very similar intermolecular interactions and that any variations relate to conformational differences between the molecules.


2019 ◽  
Vol 75 (10) ◽  
pp. 1445-1451 ◽  
Author(s):  
Ravindra N. Wickramasinhage ◽  
C. John McAdam ◽  
Lyall R. Hanton ◽  
Stephen C. Moratti ◽  
Jim Simpson

The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacrylamido-N,N,N-trimethylpropan-1-aminium cation and a 2-acrylamido-2-methylpropane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the orthorhombic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H...O and C—H...O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of interatomic contacts to the surfaces of the individual cations and anions are also compared.


Author(s):  
Cherifa Ben Mleh ◽  
Thierry Roisnel ◽  
Houda Marouani

The asymmetric unit of the title hydrated molecular salt, C6H16N22+·2ClO4−·2H2O, contains a half dication (completed by inversion symmetry), a perchlorate anion and a water molecule. The extended structure consists of infinite chains of formula [(ClO4)H2O]nn−ions extending along thebaxis linked by Ow—H...O (w = water) hydrogen bonds. These chains are cross-linked by the dicationsviaN—H...Owand weak C—H...O hydrogen bonds, thus forming a three-dimensional supramolecular network. Three-dimensional Hirshfeld surface analysis and two-dimensional fingerprint maps reveal that the structure is dominated by H...O/O...H and H...H contacts.


Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title compounds,catena-poly[[[bis[(R)-propane-1,2-diamine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N′]dichromium(III)tricopper(II)] pentahydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-diamine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water molecules. The FeIIIatoms have distorted octahedral geometries, while the CuIIatoms can be considered to be pentacoordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuIIatoms have distorted octahedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H...N and N—H...N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linkedviaN—H...O and N—H...N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]}−anions bridged by a chiral [Cu(Lpn)2]2+cation and five water molecules of crystallization. Both the CrIIIatoms and the central CuIIatom have distorted octahedral geometries. The coordination spheres of the outer CuIIatoms of the asymmetric unit can be considered to be pentacoordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuIIatoms now have distorted octahedral geometries. The networks, which lie parallel to (10-1), are linkedviaO—H...O, O—H...N, N—H...O and N—H...N hydrogen bonds involving all five non-coordinating water molecules, the cyanide N atoms and the NH2groups of the Lpn ligands, forming a three-dimensional framework.


2014 ◽  
Vol 70 (2) ◽  
pp. m75-m75 ◽  
Author(s):  
Marwa Mghandef ◽  
Habib Boughzala

The asymmetric unit of the title inorganic–organic hybrid compound, (C10H16N2O)[CoCl4]·H2O, consists of a tetrahedral [CoCl4]2−anion, together with a [C10H18N2O]2+cation and a water molecule. Crystal cohesion is achieved through N—H...Cl, O—H...Cl and N—H...O hydrogen bonds between organic cations, inorganic anions and the water molecules, building up a three-dimensional network.


2019 ◽  
Vol 234 (3) ◽  
pp. 165-175 ◽  
Author(s):  
Yee Seng Tan ◽  
Hao Zhe Chun ◽  
Mukesh M. Jotani ◽  
Edward R.T. Tiekink

Abstract The crystal and molecular structures of the one-dimensional coordination polymer [Zn(S2COEt)2(4LH2)]n (1) and binuclear [Zn(S2COCy)2]2(4LH2) (2) are described, where 4LH2 is N,N′-bis(pyridin-4-ylmethyl)ethanediamide. In 1, the Zn(S2COEt)2 entities are linked by bidentate bridging 4LH2 ligands through the pyridyl-N atoms to generate a twisted supramolecular chain. As a result of monodentate xanthate ligands, the N2S4 donor set defines a distorted tetrahedral coordination geometry and, crucially, allows the participation of the non-coordinating sulfur atoms in supramolecular association. Thus, in the crystal amide-N–H···O(amide) and amide-N–H···S(thione) hydrogen bonds link chains into a three-dimensional architecture. The substitution of the ethyl group in the xanthate ligand with a cyclohexyl group results in very different structural outcomes. In 2, a binuclear molecule is observed with the coordination geometry for zinc being defined by chelating xanthate ligands and a pyridyl-N atom with the NS4 donor set defining a highly distorted geometry. In the molecular packing, amide-N–H···S(thione) hydrogen bonds stabilise a supramolecular chain along the a-axis and these are connected into a three-dimensional arrangement by methylene-C–H···O and methylene-C–H···π(pyridyl) interactions. The relative importance of the specified intermolecular interactions and weaker, contributing contacts has been revealed by an analysis of the calculated Hirshfeld surfaces of 1 and 2.


2015 ◽  
Vol 71 (9) ◽  
pp. m162-m163
Author(s):  
Siddhartha S. Baisya ◽  
Baidyanath Ghosh ◽  
Parag S. Roy

In the title compound, [Zn(C8H5N5O3)(C12H8N2)(H2O)]·3H2O, a tridentate 2-amino-7-methyl-4-oxidopteridine-6-carboxylate ligand, a bidentate ancillary 1,10-phenanthroline (phen) ligand and a water molecule complete a distorted octahedral coordination geometry around the ZnIIatom. The pterin ligand forms two chelate rings. The phen and pterin ring systems are nearly perpendicular [dihedral angle = 85.16 (5)°]. Classical N—H...O, O—H...N and O—H...O hydrogen bonds and weak C—H...O hydrogen bonds link the complex molecules and lattice water molecules into a three-dimensional network. π–π stacking contacts are observed as well, with centroid-to-centroid distances of 3.5679 (14), 3.7004 (14), 3.6641 (15), 3.6974 (13) and 3.3412 (12) Å.


2017 ◽  
Vol 73 (11) ◽  
pp. 1599-1602 ◽  
Author(s):  
Matimon Sangsawang ◽  
Kittipong Chainok ◽  
Nanthawat Wannarit

The title compound, [CdNa2(C8H4O4)2(C3H7NO)(H2O)2]nor [CdNa2(1,3-bdc)2(DMF)(H2O)2]n, is a new CdII–NaIheterobimetallic coordination polymer. The asymmetric unit consists of one CdIIatom, two NaIatoms, two 1,3-bdc ligands, two coordinated water molecules and one coordinated DMF molecule. The CdIIatom exhibits a seven-coordinate geometry, while the NaIatoms can be considered to be pentacoordinate. The metal ions and their symmetry-related equivalents are connectedviachelating–bridging carboxylate groups of the 1,3-bdc ligands to generate a three-dimensional framework. In the crystal, there are classical O—H...O hydrogen bonds involving the coordinated water molecules and the 1,3-bdc carboxylate groups and π–π stacking between the benzene rings of the 1,3-bdc ligands present within the frameworks.


Sign in / Sign up

Export Citation Format

Share Document