scholarly journals The structure and Hirshfeld surface analysis of the salt 3-methacrylamido-N,N,N-trimethylpropan-1-aminium 2-acrylamido-2-methylpropane-1-sulfonate

2019 ◽  
Vol 75 (10) ◽  
pp. 1445-1451 ◽  
Author(s):  
Ravindra N. Wickramasinhage ◽  
C. John McAdam ◽  
Lyall R. Hanton ◽  
Stephen C. Moratti ◽  
Jim Simpson

The title salt, C10H21N2O+·C7H12NO4S−, comprises a 3-methacrylamido-N,N,N-trimethylpropan-1-aminium cation and a 2-acrylamido-2-methylpropane-1-sulfonate anion. The salt crystallizes with two unique cation–anion pairs in the asymmetric unit of the orthorhombic unit cell. The crystal studied was an inversion twin with a 0.52 (4):0.48 (4) domain ratio. In the crystal, the cations and anions stack along the b-axis direction and are linked by an extensive series of N—H...O and C—H...O hydrogen bonds, forming a three-dimensional network. Hirshfeld surface analysis was carried out on both the asymmetric unit and the two individual salts. The contribution of interatomic contacts to the surfaces of the individual cations and anions are also compared.

Author(s):  
C. John McAdam ◽  
Lyall R. Hanton ◽  
Stephen C. Moratti ◽  
Jim Simpson ◽  
Ravindra N. Wickramasinhage

In the title compound, the asymmetric unit comprises an N,N,N-trimethyl-1-(4-vinylphenyl)methanaminium cation and a 4-vinylbenzenesulfonate anion, C12H18N+·C8H7O3S−. The salt has a polymerizable vinyl group attached to both the cation and the anion. The methanaminium and vinyl substituents on the benzene ring of the cation subtend angles of 86.6 (3) and 10.5 (9)° to the ring plane, while the anion is planar excluding the sulfonate O atoms. The vinyl substituent on the benzene ring of the cation is disordered over two sites with a refined occupancy ratio of 0.542 (11):0.458 (11). In the crystal, C—H...O hydrogen bonds dominate the packing and combine with a C—H...π(ring) contact to stack the cations and anions along the a-axis direction. Hirshfeld surface analysis of the salt and of the individual cation and anion components is also reported.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Aytan A. Niyazova ◽  
...  

In the title compound, C16H12F5N3O, the dihedral angle between the aromatic rings is 31.84 (8)°. In the crystal, the molecules are linked into dimers possessing crystallographic twofold symmetry by pairwise N—H...O hydrogen bonds and weak C—H...O hydrogen bonds and aromatic π–π stacking interactions link the dimers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from F...H/H...F (41.1%), H...H (21.8%), C...H/H...C (9.7%) C...C (7.1%) and O...H/H...O (7.1%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.


Author(s):  
Nur Hafiq Hanif Hassan ◽  
Amzar Ahlami Abdullah ◽  
Suhana Arshad ◽  
Nuridayanti Che Khalib ◽  
Ibrahim Abdul Razak

In the title chalcone derivative, C16H11ClF2O2, the enone group adopts anEconformation. The dihedral angle between the benzene rings is 0.47 (9)° and an intramolecular C—H...F hydrogen bond closes anS(6) ring. In the crystal, molecules are linked into a three-dimensional network by C—H...O hydrogen bonds and aromatic π–π stacking interactions are also observed [centroid–centroid separation = 3.5629 (18) Å]. The intermolecular interactions in the crystal structure were quantified and analysed using Hirshfeld surface analysis.


Author(s):  
Afef Guesmi ◽  
Sofian Gatfaoui ◽  
Thierry Roisnel ◽  
Houda Marouani

The crystal structure of the title salt {systematic name: [1,3-phenylenebis(methylene)]bis(azanium) sulfate}, C8H14N22+·SO42−, consists of infinite (100) sheets of alternating organic and inorganic entities Them-xylylenediaminium cations are linked to the sulfate anions by N—H...O and asymmetric bifurcated N—H...(O,O) hydrogen bonds, generating a three-dimensional network. A weak C—H...O interaction also occurs. The Hirshfeld surface analysis and the two-dimensional fingerprint maps indicate that the packing is dominated by H...O/O...H and H...H contacts.


2020 ◽  
Vol 76 (8) ◽  
pp. 1361-1364
Author(s):  
Emine Berrin Cinar ◽  
Ayman Zouitini ◽  
Youssef Kandri Rodi ◽  
Younes Ouzidan ◽  
Jérôme Marrot ◽  
...  

The title quinoxaline molecule, C23H20N2O2, is not planar, the dihedral angle angle between the mean planes of the benzene rings being 72.54 (15)°. In the crystal, molecules are connected into chains extending parallel to (10\overline{1}) by weak C—H...O hydrogen bonds. Weak C—H...π interactions link the chains, forming a three-dimensional network structure. Hirshfeld surface analysis revealed that the most important contributions for the crystal packing are from H...H (48.7%), H...C/C...H (32.0%), H...O/O...H (15.4%), C...C (1.9%), H...N/N...H (1.1%) contacts.


Author(s):  
Adnan M. Qadir ◽  
Sevgi Kansiz ◽  
Georgina M. Rosair ◽  
Necmi Dege ◽  
Turganbay S. Iskenderov

In the title compound, diaquabis(ethylenediamine-κ2 N,N′)copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H...O and O—H...O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O...H/H...O (42.9%), followed by H...H (35.7%), C...H/H...C (14.2%), C...C (2.9%), C...O/O...C (2.2%), N...H/H...N (0.9%) and N...O/O...N (0.3%).


Author(s):  
Angel D. Herrera-España ◽  
Jesús Aguilera-González ◽  
Gonzalo J. Mena-Rejón ◽  
Simón Hernández-Ortega ◽  
David Cáceres-Castillo

Two crystallographically independent molecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ...A...B...A...B... chains along the [001] and [010] directions through moderate N—H...O hydrogen bonds and C—H...π interactions, respectively. The overall three-dimensional network is formed by I...I and I...S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...C/C...H (26.2%), H...H (20.9%), H...I/I...H (19.4%) and H...O/O...H (6.8%) interactions.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Gunay Z. Mammadova ◽  
Sixberth Mlowe

In the cation of the title salt, C30H28NO2 +·CF3O3S−, the four tetrahydrofuran rings adopt envelope conformations. In the crystal, pairs of cations are linked by dimeric C—H...O hydrogen bonds, forming two R 2 2(6) ring motifs parallel to the (001) plane. The cations and anions are connected by further C—H...O hydrogen bonds, forming a three-dimensional network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (47.6%), C...H/H...C (20.6%), O...H/H...O (18.0%) and F...H/H...F (9.9%) interactions.


Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Tuncer Hökelek ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp...ODhydpand C—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosingS(6) ring motifs. In the crystal, N—HDiazp...ODhydphydrogen bonds link the molecules into infinite chains along [10\overline{1}]. These chains are further linkedviaC—HBnz...ODhydp, C—HDhydp...ODhydpand C—HMth...ODhydp(Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp... π interaction may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.1%), H...C/C...H (25.3%) and H...O/O...H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.


2018 ◽  
Vol 74 (8) ◽  
pp. 1168-1172 ◽  
Author(s):  
Mehmet Akkurt ◽  
Gulnara Sh. Duruskari ◽  
Flavien A. A. Toze ◽  
Ali N. Khalilov ◽  
Afat T. Huseynova

In the cation of the title salt, C16H14Cl2N3S+·Br−, the central thiazolidine ring adopts an envelope conformation. The phenyl ring is disordered over two sites with a refined occupancy ratio of 0.541 (9):0.459 (9). In the crystal, C—H...Br and N—H...Br hydrogen bonds link the components into a three-dimensional network with the cations and anions stacked along theb-axis direction. Weak C—H...π interactions, which only involve the minor disorder component of the ring, also contribute to the molecular packing. In addition, there are also inversion-related Cl...Cl halogen bonds and C—Cl...π (ring) contacts. A Hirshfeld surface analysis was conducted to verify the contributions of the different intermolecular interactions.


Sign in / Sign up

Export Citation Format

Share Document