scholarly journals (Z)-N′-(3-Ethyl-4-oxothiazolidin-2-ylidene)-2-[6-(4-methoxyphenyl)imidazo[2,1-b]thiazol-3-yl]acetohydrazide

IUCrData ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Faika Başoğlu ◽  
Nuray Ulusoy Güzeldemirci ◽  
Rahmi Köseoğlu ◽  
...  

The title compound, C19H19N5O3S2, crystallizes in the triclinic space groupP-1, with two independent molecules (AandB) in the asymmetric unit (Z′ = 2). The imidazo[2,1-b][1,3]thiazole ring systems in moleculesAandBare essentially planar (r.m.s deviations = 0.004 and 0.005 Å, respectively), with dihedral angles of 1.1 (3) and 0.8 (3)°, respectively, between the thiazole and imidazole rings. The mean planes of these ring systems make dihedral angles of 16.0 (2) and 61.9 (2)° for moleculeA, and 11.8 (2) and 74.3 (2)° for moleculeB, with the 1,3-thiazolidine and methoxy-substituted benzene rings, respectively. In the crystal, molecules are linkedviaN—H...O hydrogen bonds, forming –A–B–A–B– chains along [100]. The chains are linked by C—H...O hydrogen bonds, forming layers parallel to theabplane.

2014 ◽  
Vol 70 (7) ◽  
pp. o779-o780
Author(s):  
B. Narayana ◽  
Prakash S. Nayak ◽  
Balladka K. Sarojini ◽  
Jerry P. Jasinski

In the title compound, C11H10BrNO3, two independent molecules (AandB) crystallize in the asymmetric unit. The dihedral angles between the mean planes of the 4-bromophenyl ring and amide group are 24.8 (7) in moleculeAand 77.1 (6)° in moleculeB. The mean plane of the methylidene group is further inclined by 75.6 (4) in moleculeAand 72.5 (6)° in moleculeBfrom that of the amide group. In the crystal, N—H...O hydrogen bonds formed by amide groups and O—H...O hydrogen bonds formed by carboxylic acid groups are observed and supported additionally by weak C—H...O interactions between the methylidene and amide groups. Together, these link the molecules into chains of dimers along [110] and formR22(8) graph-set motifs.


2015 ◽  
Vol 71 (9) ◽  
pp. 1036-1041
Author(s):  
S. Gopinath ◽  
K. Sethusankar ◽  
Bose Muthu Ramalingam ◽  
Arasambattu K. Mohanakrishnan

The title compounds, C17H13NO2S, (I), C17H13NO3S, (II), and C24H17ClN2O5S·CHCl3, (III), are indole derivatives. Compounds (I) and (II) crystalize with two independent molecules in the asymmetric unit. The indole ring systems in all three structures deviate only slightly from planarity, with dihedral angles between the planes of the pyrrole and benzene rings spanning the tight range 0.20 (9)–1.65 (9)°. These indole ring systems, in turn, are almost orthogonal to the phenylsulfonyl rings [range of dihedral angles between mean planes = 77.21 (8)–89.26 (8)°]. In the three compounds, the molecular structure is stabilized by intramolecular C—H...O hydrogen bonds, generatingS(6) ring motifs with the sulfone O atom. In compounds (I) and (II), the two independent molecules are linked by C—H...O hydrogen bonds and C—H...π interactions, while in compound (III), the molecules are linked by C—H...O hydrogen bonds, generatingR22(22) inversion dimers.


2013 ◽  
Vol 69 (2) ◽  
pp. o230-o230
Author(s):  
Binbin Zhang ◽  
Yifeng Wang ◽  
Kun Dong ◽  
Danqian Xu

There are three independent molecules in the asymmetric unit of the title compound, C9H11NO3, which are connected by O—H...O hydrogen bonds, forming anR33(15) ring. The dihedral angles between the planes of the benzene and amide groups are 75.16 (3), 71.47 (3) and 70.56 (3)°. The hydroxy O atom lies 0.912 (3), 1.172 (2) and 1.339 (2) Å from the mean plane of the corresponding benzene ring in the three molecules.


2014 ◽  
Vol 70 (2) ◽  
pp. o157-o157
Author(s):  
Nadir Ghichi ◽  
Mohamed Amine Benaouida ◽  
Ali Benosmane ◽  
Ali Benboudiaf ◽  
Hocine Merazig

The asymmetric unit of the title compound, C14H10N2O2, contains two independent molecules. In each molecule, the benzodioxole ring system displays an envelope conformation, with the methylene C atom located at the flap deviating by 0.081 (2) and 0.230 (2) Å from the mean plane formed by the other atoms. The dihedral angles between the benzoimidazole ring system (all atoms) and the benzodioxole benzene ring are 15.35 (6) and 10.99 (7)°. In the crystal, molecules are linked by N—H...N hydrogen bonds into chains running along the [101].


2014 ◽  
Vol 70 (4) ◽  
pp. o501-o502 ◽  
Author(s):  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
Thammarse S. Yamuna ◽  
H. S. Yathirajan ◽  
K. Byrappa

The title compound, C24H20N2OS, crystallizes with two independent molecules (AandB) in the asymmetric unit, in each of which the cyclohexene rings adopt half-chair conformations. The mean plane of the indole ring is twisted from those of the phenyl and thiophene rings by 69.0 (7) and 8.3 (5)°, respectively, in moleculeAand by 65.4 (9) and 6.7 (5)°, respectively, in moleculeB. The dihedral angles between the mean planes of the phenyl and thiophene rings are 63.0 (4) and 58.8 (9)° in moleculesAandB, respectively. In the crystal, N—H...O hydrogen bonds lead to the formation of an infinite chain along [101]. In addition, π–π stacking interactions are observed involving the thiophene and pyrrole rings of the two molecules, with a shortest intercentroid distance of 3.468 (2) Å.


2014 ◽  
Vol 70 (9) ◽  
pp. o907-o908 ◽  
Author(s):  
Joel T. Mague ◽  
Shaaban K. Mohamed ◽  
Mehmet Akkurt ◽  
Alaa A. Hassan ◽  
Mustafa R. Albayati

The asymmetric unit of the title compound, C16H12ClN3S, contains two independent molecules whose conformations differ primarily in the orientations of the phenyl and chlorobenzene rings with respect to the thiazole ring. In the first molecule, the dihedral angles are 3.0 (1) and 9.2 (1)°, respectively, for the phenyl ring and the chlorobenzene ring, while in the second molecule, the corresponding angles are 18.6 (1) and 23.4 (1)°. In the crystal, the two independent molecules are associatedviacomplementary N—H...N hydrogen bonds into a dimer. These dimers are associated through weak C—H...Cl and C—H...S interactions into supramolecular chains propagating along thea-axis direction.


2012 ◽  
Vol 68 (4) ◽  
pp. o1267-o1267 ◽  
Author(s):  
Mohd Sukeri Mohd Yusof ◽  
Nur Farhana Embong ◽  
Suhana Arshad ◽  
Ibrahim Abdul Razak

The asymmetric unit of the title compound, C11H12BrClN2OS, consists of two crystallographically independent molecules. In each molecule, the butanoylthiourea unit is nearly planar, with maximum deviations of 0.1292 (19) and 0.3352 (18) Å from the mean plane defined by nine non-H atoms, and is twisted relative to the terminal benzene ring with dihedral angles of 69.26 (7) and 82.41 (7)°. An intramolecular N—H...O hydrogen bond generates anS(6) ring motif in each butanoylthiourea unit. In the crystal, N—H...O hydrogen bonds link the two independent molecules together, forming anR22(12) ring motif. The molecules are further connected into a tape along thecaxisviaN—H...S and C—H...S hydrogen bonds.


2012 ◽  
Vol 68 (6) ◽  
pp. o1841-o1842
Author(s):  
Na-Bo Sun ◽  
Guo-Wu Rao ◽  
Qun Shen

The asymmetric unit of the title compound, C8H14N6O2, contains two independent molecules. In one molecule, the amide-substituted N atoms of the tetrazine ring deviate from the plane [maximum deviation = 0.028 (1) Å] through the four other atoms in the ring by 0.350 (2) and 0.344 (2) Å, forming a boat conformation, and the mean planes of the two carboxamide groups form dihedral angles of 10.46 (13) and 20.41 (12)° with the four approximtely planar atoms in the tetrazine ring. In the other molecule, the amide-substituted N atoms of the tetrazine ring deviate from the plane [maximum deviation = 0.033 (1) Å] through the four other atoms in the ring by 0.324 (2) and 0.307 (2) Å, forming a boat conformation, and the mean planes of the two carboxamide groups form dihedral angles of 14.66 (11) and 17.08 (10)° with the four approximately planar atoms of the tetrazine ring. In the crystal, N—H...O hydrogen bonds connect molecules to form a two-dimensional network parallel to (1-1-1). Intramolecular N—H...N hydrogen bonds are observed.


IUCrData ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Tarun Kumar Pal ◽  
Md Dulal Hossain ◽  
Md Chanmiya Sheikh ◽  
Ryuta Miyatake ◽  
Md Ashraful Alam

The new bromo-substituted title compound, C14H11Br2NO2, was synthesized by the condensation of 3,5-dibromosalicylaldehyde and 2-amino-4-methyl phenol. The asymmetric unit consists of two crystallographically independent molecules (AandB), which are related to each other by a pseudo-inversion centre. Both molecules are almost planar; dihedral angles between the two benzene rings are 11.40 (11)° forAand 3.05 (12)° forB. In each molecule, there is an intramolecular N—H...O hydrogen bond with anS(6) ring motif. In the crystal, two independent molecules are linked by O—H...O hydrogen bonds, forming a pseudo-inversionA–Bdimer.


2017 ◽  
Vol 73 (9) ◽  
pp. 1312-1315
Author(s):  
Hyunjin Park ◽  
Jineun Kim ◽  
Hojae Chiang ◽  
Tae Ho Kim

The title compound, C16H14F5N5O5S [systematic name: 2-(2,2-difluoroethoxy)-N-(5,8-dimethoxy-1,2,4-triazolo[1,5-c]pyrimidin-2-yl)-6-(trifluoromethyl)benzenesulfonamide], is used as a herbicide. The asymmetric unit of this structure comprises two independent molecules,AandB. The dihedral angles between the ring planes of the triazolopyrimidine ring systems and the benzene rings are 68.84 (7)° forAand 68.05 (6)° forB. In the crystal, weak intermolecular π–π interactions, with centroid–centroid separations of 3.4456 (17) and 3.5289 (15) Å and C—F...π [3.5335 (17) Å and 107.92 (13)°] contacts link adjacent molecules into chains along [001]. C—H...O and C—H...F hydrogen bonds link typeBmolecules into chains parallel to (100). Additional C—H...F hydrogen bonds together with short F...F contacts further aggregate the structure into a three-dimensional network.


Sign in / Sign up

Export Citation Format

Share Document