Investigation of Prandtl number effect on natural convection MHD in an open cavity by lattice Boltzmann method

2012 ◽  
Vol 30 (1) ◽  
pp. 97-116 ◽  
Author(s):  
GholamReza Kefayati ◽  
Mofid Gorji ◽  
Hasan Sajjadi ◽  
Davood Domiri Ganji
Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 148
Author(s):  
Seyed Amin Nabavizadeh ◽  
Himel Barua ◽  
Mohsen Eshraghi ◽  
Sergio D. Felicelli

A multi-distribution lattice Boltzmann Bhatnagar–Gross–Krook (BGK) model with a multiple-grid lattice Boltzmann (MGLB) model is proposed to efficiently simulate natural convection over a wide range of Prandtl numbers. In this method, different grid sizes and time steps for heat transfer and fluid flow equations are chosen. The model is validated against natural convection in a square cavity, since extensive benchmark solutions are available for that problem. The proposed method can resolve the computational difficulty in simulating problems with very different time scales, in particular, when using extremely low or high Prandtl numbers. The technique can also enhance computational speed and stability while keeping the simplicity of the BGK method. Compared with the conventional lattice Boltzmann method, the simulation time can be reduced up to one-tenth of the time while maintaining the accuracy in an acceptable range. The proposed model can be extended to other lattice Boltzmann collision models and three-dimensional cases, making it a great candidate for large-scale simulations.


2021 ◽  
Vol 32 (1) ◽  
pp. 21-28
Author(s):  
Umar Fauzi

The Lattice Boltzmann Method is one of the computational fluid dynamics methods that can be applied to simulate fluid based on the microscopic and kinetic theory of gases. In this study, earth mantle convection is simulated by combining the concept of lid-driven cavity simulation and natural convection using the Lattice Boltzmann method in a two-dimensional system (D2Q9). The results of the lid-driven cavity and natural convection simulation are comparable to previous works. This study shows that at a certain lid velocity, the direction of the moving plume is changed. This earth mantle convection simulation will give better and more reliable results by considering more complicated boundary conditions and adequate simulation systems.


Sign in / Sign up

Export Citation Format

Share Document