Numerical simulation of heat and fluid flow in basic pulse tube refrigerator

Author(s):  
Takao Koshimizu ◽  
Hiromi Kubota ◽  
Yasuyuki Takata ◽  
Takehiro Ito
2003 ◽  
Vol 2003.7 (0) ◽  
pp. 99-100
Author(s):  
Takao KOSHIMIZU ◽  
Hiromi KUBOTA ◽  
Yasuyuki TAKATA ◽  
Takehiro ITO

2001 ◽  
Vol 2001.5 (0) ◽  
pp. 125-128
Author(s):  
Takao KOSHIMIZU ◽  
Hiromi KUBOTA ◽  
Yasuyuki TAKATA ◽  
Takehiro ITO

Author(s):  
Takao Koshimizu ◽  
Hiromi Kubota ◽  
Yasuyuki Takata ◽  
Takehiro Ito

The working principle of refrigeration in basic pulse-tube refrigerators (BPTR) has been explained by the mechanism called surface heat pumping (SHP) that heat is conveyed from the cold end to the hot end of the pulse tube by the successive heat exchange between the working gas and the wall. In this study, a numerical simulation has been performed to clarify the effect of the wall in BPTRs by comparing the numerical results in two physical models; one is the model considering the heat exchange between the working gas and the wall (HE model), and the other is the model ignoring that (AW model). As a result, the importance in the effect of the wall was shown clearly. In addition, the mechanism of refrigeration other than the SHP was made clear in the AW model.


Author(s):  
Takao Koshimizu ◽  
Hiromi Kubota ◽  
Yasuyuki Takata ◽  
Takehiro Ito

Numerical simulation of heat and fluid flow in a basic and an orifice pulse tube refrigerator have been performed to visualize heat pumping generated in the regenerator and the pulse tube, and to clarify the difference in heat pumping caused by the phase difference between pressure and displacement of gas. Common components of the regenerator and the pulse tube are used in the basic and the orifice pulse tube refrigerator. The flow in the tube is assumed to be one-dimensional and compressible. As governing equations, the continuity, momentum and energy equations are used in this study. From the temperature and velocity field obtained as a result of the simulation, the relation between the displacement and the temperature change of gas elements is visually clarified, and consequently it is found that the characteristic that the temperatures of gas elements are nearly higher than those of the regenerator material or the pulse-tube wall during compression and lower during expansion is very important for the heat pumping in basic and orifice pulse tube refrigerators. Furthermore, the behavior of heat pumping in the basic and the orifice pulse tube refrigerator is illustrated by analyzing the relation between the displacement of gas elements and heat quantity transferred to the wall from the gas elements, and the difference in heat pumping between the basic and the orifice pulse tube refrigerator is made clear.


2003 ◽  
Vol 46 (4) ◽  
pp. 572-578 ◽  
Author(s):  
Takao KOSHIMIZU ◽  
Hiromi KUBOTA ◽  
Yasuyuki TAKATA ◽  
Takehiro ITO

2005 ◽  
Vol 2005.9 (0) ◽  
pp. 93-94
Author(s):  
Takao KOSHIMIZU ◽  
Hiromi KUBOTA ◽  
Yasuyuki TAKATA ◽  
Takehiro ITO

2003 ◽  
Vol 2003 (0) ◽  
pp. 145-146
Author(s):  
Takao KOSHIMIZU ◽  
Hiromi KUBOTA ◽  
Yasuyuki TAKATA ◽  
Takehiro ITO

2002 ◽  
Vol 2002 (0) ◽  
pp. 369-370 ◽  
Author(s):  
Takao KOSHIMIZU ◽  
Hiromi KUBOTA ◽  
Yasuyuki TAKATA ◽  
Takehiro ITO

Sign in / Sign up

Export Citation Format

Share Document