tube wall
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 71)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Lingyun Cheng ◽  
Nianwen Xiang ◽  
Kejie Li ◽  
Weijiang Chen ◽  
Kai Bian ◽  
...  

Abstract After cumulative discharge of gas discharge tube (GDT), it is easy to form a short circuit pathway between the two electrodes, which increases the failure risk and causes severe influences on the protected object. To reduce the failure risk of GDT and improve cumulative discharge times before failure, this work aims to suppress the formation of two short-circuit pathways by optimizing the tube wall structure, the electrode materials and the electrode structure. A total of five improved GDT samples are designed by focusing on the insulation resistance change that occurs after the improvement; then, by combining these designs with the microscopic morphology changes inside the cavity and the differences in deposition composition, the reasons for the differences in the GDT failure risk are also analyzed. The experimental results show that compared with GDT of traditional structure and material, the method of adding grooves at both ends of the tube wall can effectively block the deposition pathway of the tube wall, and the cumulative discharge times before device failure are increased by 149%. On this basis, when the iron-nickel electrode is replaced with a tungsten-copper electrode, the difference in the electrode’s surface splash characteristics further extends the discharge times before failure by 183%. In addition, when compared with the traditional electrode structure, the method of adding an annular structure at the electrode edge to block the splashing pathway for the particles on the electrode surface shows no positive effect, and the cumulative discharge times before the failure of the two structures are reduced by 22.8% and 49.7% respectively. Among these improved structures, the samples with grooves at both ends of the tube wall and tungsten-copper as their electrode material have the lowest failure risk.


2021 ◽  
Vol 53 (6) ◽  
pp. 065502
Author(s):  
Ming C Lee ◽  
Huan J Keh

Abstract The steady rotation of a slip spherical particle about a diameter lying along the longitudinal axis of a slip circular tube filled with an incompressible Newtonian fluid at low Reynolds numbers is analyzed. To solve the Stokes equations for the fluid flow, the solution is constituted by the summation of general solutions in both cylindrical and spherical coordinates. The boundary conditions are implemented first along the tube wall via the Fourier cosine transform and then over the particle surface through a collocation method. Results of the resisting torque acting on the particle are obtained for various values of the relevant dimensionless parameters. The effect of the confining tube on the axisymmetric rotation of the particle with slip surfaces is interesting. The torque increases monotonically with an increase in the stickiness of the tube wall, keeping the other parameters unchanged. When the stickiness of the tube wall is greater than a critical value, the torque is greater than that on the particle in an unbounded identical fluid and increases with increases in the stickiness of the particle surface and particle-to-tube radius ratio. When the stickiness of the tube wall is less than the critical value, conversely, the torque is smaller than that on the unconfined particle and decreases with increases in the particle stickiness and radius ratio.


Author(s):  
Aleksei V Siasko ◽  
Yuri B Golubovskii ◽  
Sergei Valin

Abstract The work is devoted to calculating the flux of resonance photons towards the boundary of a cylindrical discharge tube of a finite size during the propagation of a pre-breakdown ionization wave of positive polarity. A cylindrical discharge tube of finite dimensions with argon at the pressure of p=1 Torr is considered. The propagation mechanisms of metastable and resonance atoms are compared. For the considered discharge conditions, the space-time distributions of metastable and resonance atoms are calculated. The manuscript presents a technique for calculating the flux of resonance photons onto the discharge tube wall with the account of the radiation trapping. It is shown that for the studied conditions the photon flux density towards the longitudinal boundary of the tube ahead of the ionization wave can reach 1013 cm-2s-1. The obtained results allow describing the appearance of seed electrons ahead of the positive ionization wavefront during its propagation due to the electron photoemission from the discharge tube wall.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1151
Author(s):  
Olev Vinn

Polychaete annelids are a very important group of calcifiers in the modern oceans. They can produce calcite, aragonite, and amorphous phosphates. Serpulids possess very diverse tube ultra-structures, several unique to them. Serpulid tubes are composed of aragonite or calcite or a mixture of both polymorphs. The serpulid tubes with complex oriented microstructures, such as lamello fibrillar, are exclusively calcitic, whereas tubes with prismatic structures can be composed either of calcite or aragonite. In serpulids, the calcareous opercula also have complex microstructures. Evolutionarily, calcitic serpulid taxa belong to one clade and the aragonitic taxa belong to another clade. Modern ocean acidification affects serpulid biomineralization. Serpulids are capable of biomineralization in extreme environments, such as the deepest part (hadal zone) of the ocean. The tubes of calcareous sabellids are aragonitic and have two layers, the inner irregular spherulitic prismatic layer and the outer spherulitic layer. The tube wall of cirratulids is composed of aragonitic lamellae with a spherulitic prismatic structure. In some other polychaetes, biominerals are formed in different parts of the animal body, such as chaetae or body shields, or occur within the body as granule-shaped or rod-shaped inclusions.


2021 ◽  
Vol 43 (3) ◽  
pp. 15-23
Author(s):  
N.М. Fialko ◽  
A.V. Nosovsksyi ◽  
S.O. Aleshko ◽  
I.L. Pioro ◽  
D.P. Khmil

The results of computer modeling of the spatial distribution of the specific heat capacity under condition of the upstream flow of supercritical water in vertical bare tubes are given. The features of the motion along the tube length the front of the pseudo-phase transition "pseudoliquid-pseudogas" are considered. The position of this front determines the location of the extremums of the specific heat capacity of water. The regularities of changes in the radial distributions of heat capacity along the length of the tube and longitudinal distributions for different values of the radial coordinate are investigated. The data of a comparative analysis of this distribution at various values of the specific heat flux supplied to the tube wall are presented


2021 ◽  
Author(s):  
Zhao-Feng Yuan ◽  
Tong-Yao Pu ◽  
Chen-Yu Jin ◽  
Wei-Jia Feng ◽  
Jia-Yue Wang ◽  
...  

Abstract Arsenic (As) pollution in paddy fields is a major threat to rice safety. Existing As remediation techniques are costly, require external chemical addition and degrade soil properties. Here, we report the use of plastic tubes as a recyclable tool to precisely extract As from contaminated soils. Following insertion into flooded paddy soils, polyethylene (PE) tube walls were covered by thin but massive Fe coatings of 76.9-367 mg Fe m-2 in 2 weeks, which adsorbed significant amounts of As as well as lead and antimony. The formation of tube-wall Fe oxides was driven by local Fe-oxidizing bacteria with oxygen produced by oxygenic phototrophs (e.g., Cyanobacteria) or diffused from air through the tube wall. The tubes with As-bound Fe oxides can be easily separated from soil and then recycled. We tested the As removal efficiency in a pilot experiment to remove As from ~ 20 cm depth / 80 kg soils in a two-year experiment and achieved an overall efficiency of 152 mg As m-2 soil year-1. The As accumulated in rice tissues was significantly decreased in the treatment. This work provides a low-cost and sustainable soil remediation method for the targeted removal of As from soils and a useful tool for the study and management of the biogeochemical Fe cycle in paddy soils.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110355
Author(s):  
Ni Zhang ◽  
Chenyang Zheng ◽  
Zhongwei Zhao ◽  
Bo Yang

FRP-concrete-steel tubular (FCS) composite columns are composed of the external tube, the internal steel tube, and the concrete between both tubes. They have been attracting the attention of many researchers due to their high ductility, lightweight, resistance to corrosion, and easiness of construction. However, there are few studies on FRP-concrete-steel tubular composite columns under eccentric load. To investigate the behavior of composite columns under the eccentric compression, a non-linear analysis program for FCS composite columns was compiled. The program was verified by existing tests, and the influences of eccentricity, FRP tube wall thickness, steel tube wall thickness, steel tube radius, slenderness ratio, and concrete strength grade on the eccentric compression performance were systematically analyzed. The results showed that the calculated results were in good agreement with the experimental results. It showed that the program can accurately reflect the deformation of FCS composite columns under various loads and estimate the ultimate load of FCS composite columns under eccentric compression. The eccentric ultimate load increased with the decrease of eccentricity and slenderness ratio, and with the increase of FRP tube wall thickness, steel tube wall thickness, and concrete strength grade. The ultimate eccentric load decreased with the increase of steel tube radius, but when the steel tube wall thickness reached a certain thickness, the ultimate eccentric load of FCS composite columns increases with the increase of steel tube radius. The conclusion can provide reference for the practical application of the structure.


2021 ◽  
Author(s):  
Muhannad Altimemy ◽  
Saif Watheq ◽  
Justin Caspar ◽  
Alparslan Oztekin

Abstract Design and optimization using computational fluid dynamics to enhance the hydro turbine’s performance are becoming gradually more common because of its flexibility, minor detailed flow description, and cost-effectiveness. These features are not easily achievable in model testing. k–ω simulations conducted in OpenFOAM 7 characterize the flow structure inside an industrial-sized Kaplan turbine module operating at the peak design flowrate. The power signal, velocity, vorticity, and pressure field are presented over the blades and throughout the draft tube. Additionally, pressure fluctuations were probed along the draft tube wall. The simulation shows a tip vortex rope in the narrow gap between the blade tip and turbine casing. The strong influence of the swirl leaving the runner had a negative impact on the flow pressure fluctuation. Also, high vortical activity was presented near the draft tube wall, leading to turbine instability. It was demonstrated that the turbine generates 14.923 MW of average power. The power signal showed minor fluctuations induced by the vortical activity close to the runner region and the corresponding pressure fluctuations. The Fast Fourier Transform showed the system is dominated by low frequency, high amplitude fluctuations.


Sign in / Sign up

Export Citation Format

Share Document