Author response for "Effect of a transverse crack on the dynamic behaviours of a 3D rod-fastening rotor bearing system"

Author(s):  
Nanshan Wang ◽  
Heng Liu ◽  
Yi Liu ◽  
Qidan Wang ◽  
Shemiao Qi ◽  
...  
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nanshan Wang ◽  
Heng Liu ◽  
Qidan Wang ◽  
Shemiao Qi ◽  
Yi Liu

Purpose This study aims to obtain the dynamic behaviours of cracked rod-fastening rotor bearing system (RFBS), and experimental investigation was carried out to examine the dynamic characteristics of this kind of assembled rotor bearing system with a transverse crack passing through the critical speed. Design/methodology/approach An experimental test rig of cracked RFBS was established for examining the vibration behaviours between intact and cracked system. The crack on the surface of a fastening rod was simulated by wire-electrode cutting processing method. The comprehensive analysis method of vibration was used to obtain the dynamic characteristics such as vibration amplitude, acceleration and whirling orbits before and after the critical speed as well as the instantaneous response in the process of speed up. Findings Some experimental vibration datum is obtained for cracked RFBS. The appearance of a crack will introduce the initial bending and make the vibration amplitude, acceleration and instant response in the process of speed up increase greatly as well as the change of whirling orbits. Originality/value The actual vibration characteristics for this complex assembled rotor system with a transverse crack are given passing through the critical speed. It can provide some useful help for monitoring the vibration behaviours of this kind of assembled rotor system as well as the detection of the crack fault. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0260/


Sign in / Sign up

Export Citation Format

Share Document