On lower bounds for the smallest eigenvalue of a Hermitian positive-definite matrix

1995 ◽  
Vol 41 (2) ◽  
pp. 539-540 ◽  
Author(s):  
E.M. Ma ◽  
C.J. Zarowski
Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2667-2671
Author(s):  
Guoxing Wu ◽  
Ting Xing ◽  
Duanmei Zhou

In this paper, the Hermitian positive definite solutions of the matrix equation Xs + A*X-tA = Q are considered, where Q is a Hermitian positive definite matrix, s and t are positive integers. Bounds for the sum of eigenvalues of the solutions to the equation are given. The equivalent conditions for solutions of the equation are obtained. The eigenvalues of the solutions of the equation with the case AQ = QA are investigated.


2019 ◽  
Vol 7 (1) ◽  
pp. 304-315
Author(s):  
A. Melman

Abstract The classical Eneström-Kakeya theorem establishes explicit upper and lower bounds on the zeros of a polynomial with positive coefficients and has been generalized for positive definite matrix polynomials by several authors. Recently, extensions that improve the (scalar) Eneström-Kakeya theorem were obtained with a transparent and unified approach using just a few tools. Here, the same tools are used to generalize these extensions to positive definite matrix polynomials, while at the same time generalizing the tools themselves. In the process, a framework is developed that can naturally generate additional similar results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Reena Jain ◽  
Hemant Kumar Nashine ◽  
Vahid Parvaneh

AbstractThis study introduces extended Branciari quasi-b-distance spaces, a novel implicit contractive condition in the underlying space, and basic fixed-point results, a weak well-posed property, a weak limit shadowing property and generalized Ulam–Hyers stability. The given notions and results are exemplified by suitable models. We apply these results to obtain a sufficient condition ensuring the existence of a unique positive-definite solution of a nonlinear matrix equation (NME) $\mathcal{X}=\mathcal{Q} + \sum_{i=1}^{k}\mathcal{A}_{i}^{*} \mathcal{G(X)}\mathcal{A}_{i}$ X = Q + ∑ i = 1 k A i ∗ G ( X ) A i , where $\mathcal{Q}$ Q is an $n\times n$ n × n Hermitian positive-definite matrix, $\mathcal{A}_{1}$ A 1 , $\mathcal{A}_{2}$ A 2 , …, $\mathcal{A}_{m}$ A m are $n \times n$ n × n matrices, and $\mathcal{G}$ G is a nonlinear self-mapping of the set of all Hermitian matrices that are continuous in the trace norm. We demonstrate this sufficient condition for the NME $\mathcal{X}= \mathcal{Q} +\mathcal{A}_{1}^{*}\mathcal{X}^{1/3} \mathcal{A}_{1}+\mathcal{A}_{2}^{*}\mathcal{X}^{1/3} \mathcal{A}_{2}+ \mathcal{A}_{3}^{*}\mathcal{X}^{1/3}\mathcal{A}_{3}$ X = Q + A 1 ∗ X 1 / 3 A 1 + A 2 ∗ X 1 / 3 A 2 + A 3 ∗ X 1 / 3 A 3 , and visualize this through convergence analysis and a solution graph.


Sign in / Sign up

Export Citation Format

Share Document