scholarly journals Transfer Learning With Neural Networks for Bearing Fault Diagnosis in Changing Working Conditions

IEEE Access ◽  
2017 ◽  
Vol 5 ◽  
pp. 14347-14357 ◽  
Author(s):  
Ran Zhang ◽  
Hongyang Tao ◽  
Lifeng Wu ◽  
Yong Guan
Author(s):  
Xudong Song ◽  
Dajie Zhu ◽  
Pan Liang ◽  
Lu An

Although the existing transfer learning method based on deep learning can realize bearing fault diagnosis under variable load working conditions, it is difficult to obtain bearing fault data and the training data of fault diagnosis model is insufficient£¬which leads to the low accuracy and generalization ability of fault diagnosis model, A fault diagnosis method based on improved elastic net transfer learning under variable load working conditions is proposed. The improved elastic net transfer learning is used to suppress the over fitting and improve the training efficiency of the model, and the long short-term memory network is introduced to train the fault diagnosis model, then a small amount of target domain data is used to fine tune the model parameters. Finally, the fault diagnosis model under variable load working conditions based on improved elastic net transfer learning is constructed. Finally, through model experiments and comparison with conventional deep learning fault diagnosis models such as long short-term memory network (LSTM), gated recurrent unit (GRU) and Bi-LSTM, it shows that the proposed method has higher accuracy and better generalization ability, which verifies the effectiveness of the method.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6039
Author(s):  
Kai Wang ◽  
Wei Zhao ◽  
Aidong Xu ◽  
Peng Zeng ◽  
Shunkun Yang

Data-driven bearing-fault diagnosis methods have become a research hotspot recently. These methods have to meet two premises: (1) the distributions of the data to be tested and the training data are the same; (2) there are a large number of high-quality labeled data. However, machines usually work under different working conditions in practice, which challenges these prerequisites due to the fact that the data distributions under different working conditions are different. In this paper, the one-dimensional Multi-Scale Domain Adaptive Network (1D-MSDAN) is proposed to address this issue. The 1D-MSDAN is a kind of deep transfer model, which uses both feature adaptation and classifier adaptation to guide the multi-scale convolutional neural network to perform bearing-fault diagnosis under varying working conditions. Feature adaptation is performed by both multi-scale feature adaptation and multi-level feature adaptation, which helps in finding domain-invariant features by minimizing the distribution discrepancy between different working conditions by using the Multi-kernel Maximum Mean Discrepancy (MK-MMD). Furthermore, classifier adaptation is performed by entropy minimization in the target domain to bridge the source classifier and target classifier to further eliminate domain discrepancy. The Case Western Reserve University (CWRU) bearing database is used to validate the proposed 1D-MSDAN. The experimental results show that the diagnostic accuracy for the 12 transfer tasks performed by 1D-MSDAN was superior to that of the mainstream transfer learning models for bearing-fault diagnosis under variable working conditions. In addition, the transfer learning performance of 1D-MSDAN for multi-target domain adaptation and real industrial scenarios was also verified.


Measurement ◽  
2021 ◽  
Vol 171 ◽  
pp. 108767
Author(s):  
Yisheng Zou ◽  
Yongzhi Liu ◽  
Jialin Deng ◽  
Yuliang Jiang ◽  
Weihua Zhang

Sign in / Sign up

Export Citation Format

Share Document