A New Deep Transfer Learning Method for Bearing Fault Diagnosis Under Different Working Conditions

2020 ◽  
Vol 20 (15) ◽  
pp. 8394-8402 ◽  
Author(s):  
Jun Zhu ◽  
Nan Chen ◽  
Changqing Shen
Measurement ◽  
2021 ◽  
Vol 171 ◽  
pp. 108767
Author(s):  
Yisheng Zou ◽  
Yongzhi Liu ◽  
Jialin Deng ◽  
Yuliang Jiang ◽  
Weihua Zhang

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun He ◽  
Xiang Li ◽  
Yong Chen ◽  
Danfeng Chen ◽  
Jing Guo ◽  
...  

In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry. Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity, which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has better performance.


Measurement ◽  
2020 ◽  
Vol 151 ◽  
pp. 107227 ◽  
Author(s):  
Zhenghong Wu ◽  
Hongkai Jiang ◽  
Ke Zhao ◽  
Xingqiu Li

Author(s):  
Xudong Song ◽  
Dajie Zhu ◽  
Pan Liang ◽  
Lu An

Although the existing transfer learning method based on deep learning can realize bearing fault diagnosis under variable load working conditions, it is difficult to obtain bearing fault data and the training data of fault diagnosis model is insufficient£¬which leads to the low accuracy and generalization ability of fault diagnosis model, A fault diagnosis method based on improved elastic net transfer learning under variable load working conditions is proposed. The improved elastic net transfer learning is used to suppress the over fitting and improve the training efficiency of the model, and the long short-term memory network is introduced to train the fault diagnosis model, then a small amount of target domain data is used to fine tune the model parameters. Finally, the fault diagnosis model under variable load working conditions based on improved elastic net transfer learning is constructed. Finally, through model experiments and comparison with conventional deep learning fault diagnosis models such as long short-term memory network (LSTM), gated recurrent unit (GRU) and Bi-LSTM, it shows that the proposed method has higher accuracy and better generalization ability, which verifies the effectiveness of the method.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shoubing Xiang ◽  
Jiangquan Zhang ◽  
Hongli Gao ◽  
Dalei Shi ◽  
Liang Chen

Current studies on intelligent bearing fault diagnosis based on transfer learning have been fruitful. However, these methods mainly focus on transfer fault diagnosis of bearings under different working conditions. In engineering practice, it is often difficult or even impossible to obtain a large amount of labeled data from some machines, and an intelligent diagnostic method trained by labeled data from one machine may not be able to classify unlabeled data from other machines, strongly hindering the application of these intelligent diagnostic methods in certain industries. In this study, a deep transfer learning method for bearing fault diagnosis, domain separation reconstruction adversarial networks (DSRAN), was proposed for the transfer fault diagnosis between machines. In DSRAN, domain-difference and domain-invariant feature extractors are used to extract and separate domain-difference and domain-invariant features, respectively Moreover, the idea of generative adversarial networks (GAN) was used to improve the network in learning domain-invariant features. By using domain-invariant features, DSRAN can adopt the distribution of the data in the source and target domains. Six transfer fault diagnosis experiments were performed to verify the effectiveness of the proposed method, and the average accuracy reached 89.68%. The results showed that the DSRAN method trained by labeled data obtained from one machine can be used to identify the health state of the unlabeled data obtained from other machines.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6039
Author(s):  
Kai Wang ◽  
Wei Zhao ◽  
Aidong Xu ◽  
Peng Zeng ◽  
Shunkun Yang

Data-driven bearing-fault diagnosis methods have become a research hotspot recently. These methods have to meet two premises: (1) the distributions of the data to be tested and the training data are the same; (2) there are a large number of high-quality labeled data. However, machines usually work under different working conditions in practice, which challenges these prerequisites due to the fact that the data distributions under different working conditions are different. In this paper, the one-dimensional Multi-Scale Domain Adaptive Network (1D-MSDAN) is proposed to address this issue. The 1D-MSDAN is a kind of deep transfer model, which uses both feature adaptation and classifier adaptation to guide the multi-scale convolutional neural network to perform bearing-fault diagnosis under varying working conditions. Feature adaptation is performed by both multi-scale feature adaptation and multi-level feature adaptation, which helps in finding domain-invariant features by minimizing the distribution discrepancy between different working conditions by using the Multi-kernel Maximum Mean Discrepancy (MK-MMD). Furthermore, classifier adaptation is performed by entropy minimization in the target domain to bridge the source classifier and target classifier to further eliminate domain discrepancy. The Case Western Reserve University (CWRU) bearing database is used to validate the proposed 1D-MSDAN. The experimental results show that the diagnostic accuracy for the 12 transfer tasks performed by 1D-MSDAN was superior to that of the mainstream transfer learning models for bearing-fault diagnosis under variable working conditions. In addition, the transfer learning performance of 1D-MSDAN for multi-target domain adaptation and real industrial scenarios was also verified.


Sign in / Sign up

Export Citation Format

Share Document