scholarly journals Generational Distance Indicator-Based Evolutionary Algorithm With an Improved Niching Method for Many-Objective Optimization Problems

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 63881-63891 ◽  
Author(s):  
Yang Liu ◽  
Jingxuan Wei ◽  
Xin Li ◽  
Minghan Li
2013 ◽  
Vol 21 (1) ◽  
pp. 65-82 ◽  
Author(s):  
Hemant Kumar Singh ◽  
Tapabrata Ray ◽  
Ruhul Sarker

In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.


2021 ◽  
Vol 6 (4 (114)) ◽  
pp. 6-14
Author(s):  
Maan Afathi

The main purpose of using the hybrid evolutionary algorithm is to reach optimal values and achieve goals that traditional methods cannot reach and because there are different evolutionary computations, each of them has different advantages and capabilities. Therefore, researchers integrate more than one algorithm into a hybrid form to increase the ability of these algorithms to perform evolutionary computation when working alone. In this paper, we propose a new algorithm for hybrid genetic algorithm (GA) and particle swarm optimization (PSO) with fuzzy logic control (FLC) approach for function optimization. Fuzzy logic is applied to switch dynamically between evolutionary algorithms, in an attempt to improve the algorithm performance. The HEF hybrid evolutionary algorithms are compared to GA, PSO, GAPSO, and PSOGA. The comparison uses a variety of measurement functions. In addition to strongly convex functions, these functions can be uniformly distributed or not, and are valuable for evaluating our approach. Iterations of 500, 1000, and 1500 were used for each function. The HEF algorithm’s efficiency was tested on four functions. The new algorithm is often the best solution, HEF accounted for 75 % of all the tests. This method is superior to conventional methods in terms of efficiency


Sign in / Sign up

Export Citation Format

Share Document