combinatorial optimization problems
Recently Published Documents


TOTAL DOCUMENTS

1017
(FIVE YEARS 251)

H-INDEX

41
(FIVE YEARS 6)

Author(s):  
Bruno Ordozgoiti ◽  
Ananth Mahadevan ◽  
Antonis Matakos ◽  
Aristides Gionis

AbstractWhen searching for information in a data collection, we are often interested not only in finding relevant items, but also in assembling a diverse set, so as to explore different concepts that are present in the data. This problem has been researched extensively. However, finding a set of items with minimal pairwise similarities can be computationally challenging, and most existing works striving for quality guarantees assume that item relatedness is measured by a distance function. Given the widespread use of similarity functions in many domains, we believe this to be an important gap in the literature. In this paper we study the problem of finding a diverse set of items, when item relatedness is measured by a similarity function. We formulate the diversification task using a flexible, broadly applicable minimization objective, consisting of the sum of pairwise similarities of the selected items and a relevance penalty term. To find good solutions we adopt a randomized rounding strategy, which is challenging to analyze because of the cardinality constraint present in our formulation. Even though this obstacle can be overcome using dependent rounding, we show that it is possible to obtain provably good solutions using an independent approach, which is faster, simpler to implement and completely parallelizable. Our analysis relies on a novel bound for the ratio of Poisson-Binomial densities, which is of independent interest and has potential implications for other combinatorial-optimization problems. We leverage this result to design an efficient randomized algorithm that provides a lower-order additive approximation guarantee. We validate our method using several benchmark datasets, and show that it consistently outperforms the greedy approaches that are commonly used in the literature.


2022 ◽  
Vol 13 (2) ◽  
pp. 151-164 ◽  
Author(s):  
Radomil Matousek ◽  
Ladislav Dobrovsky ◽  
Jakub Kudela

The Quadratic Assignment Problem (QAP) is one of the classical combinatorial optimization problems and is known for its diverse applications. The QAP is an NP-hard optimization problem which attracts the use of heuristic or metaheuristic algorithms that can find quality solutions in an acceptable computation time. On the other hand, there is quite a broad spectrum of mathematical programming techniques that were developed for finding the lower bounds for the QAP. This paper presents a fusion of the two approaches whereby the solutions from the computations of the lower bounds are used as the starting points for a metaheuristic, called HC12, which is implemented on a GPU CUDA platform. We perform extensive computational experiments that demonstrate that the use of these lower bounding techniques for the construction of the starting points has a significant impact on the quality of the resulting solutions.


2021 ◽  
Vol 2 (4) ◽  
pp. 1-21
Author(s):  
Stuart Hadfield

Mapping functions on bits to Hamiltonians acting on qubits has many applications in quantum computing. In particular, Hamiltonians representing Boolean functions are required for applications of quantum annealing or the quantum approximate optimization algorithm to combinatorial optimization problems. We show how such functions are naturally represented by Hamiltonians given as sums of Pauli Z operators (Ising spin operators) with the terms of the sum corresponding to the function’s Fourier expansion. For many classes of Boolean functions which are given by a compact description, such as a Boolean formula in conjunctive normal form that gives an instance of the satisfiability problem, it is #P-hard to compute its Hamiltonian representation, i.e., as hard as computing its number of satisfying assignments. On the other hand, no such difficulty exists generally for constructing Hamiltonians representing a real function such as a sum of local Boolean clauses each acting on a fixed number of bits as is common in constraint satisfaction problems. We show composition rules for explicitly constructing Hamiltonians representing a wide variety of Boolean and real functions by combining Hamiltonians representing simpler clauses as building blocks, which are particularly suitable for direct implementation as classical software. We further apply our results to the construction of controlled-unitary operators, and to the special case of operators that compute function values in an ancilla qubit register. Finally, we outline several additional applications and extensions of our results to quantum algorithms for optimization. A goal of this work is to provide a design toolkit for quantum optimization which may be utilized by experts and practitioners alike in the construction and analysis of new quantum algorithms, and at the same time to provide a unified framework for the various constructions appearing in the literature.


2021 ◽  
pp. 1-21
Author(s):  
Chu-Min Li ◽  
Zhenxing Xu ◽  
Jordi Coll ◽  
Felip Manyà ◽  
Djamal Habet ◽  
...  

The Maximum Satisfiability Problem, or MaxSAT, offers a suitable problem solving formalism for combinatorial optimization problems. Nevertheless, MaxSAT solvers implementing the Branch-and-Bound (BnB) scheme have not succeeded in solving challenging real-world optimization problems. It is widely believed that BnB MaxSAT solvers are only superior on random and some specific crafted instances. At the same time, SAT-based MaxSAT solvers perform particularly well on real-world instances. To overcome this shortcoming of BnB MaxSAT solvers, this paper proposes a new BnB MaxSAT solver called MaxCDCL. The main feature of MaxCDCL is the combination of clause learning of soft conflicts and an efficient bounding procedure. Moreover, the paper reports on an experimental investigation showing that MaxCDCL is competitive when compared with the best performing solvers of the 2020 MaxSAT Evaluation. MaxCDCL performs very well on real-world instances, and solves a number of instances that other solvers cannot solve. Furthermore, MaxCDCL, when combined with the best performing MaxSAT solvers, solves the highest number of instances of a collection from all the MaxSAT evaluations held so far.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261250
Author(s):  
Osman Asif Malik ◽  
Hayato Ushijima-Mwesigwa ◽  
Arnab Roy ◽  
Avradip Mandal ◽  
Indradeep Ghosh

Many fundamental problems in data mining can be reduced to one or more NP-hard combinatorial optimization problems. Recent advances in novel technologies such as quantum and quantum-inspired hardware promise a substantial speedup for solving these problems compared to when using general purpose computers but often require the problem to be modeled in a special form, such as an Ising or quadratic unconstrained binary optimization (QUBO) model, in order to take advantage of these devices. In this work, we focus on the important binary matrix factorization (BMF) problem which has many applications in data mining. We propose two QUBO formulations for BMF. We show how clustering constraints can easily be incorporated into these formulations. The special purpose hardware we consider is limited in the number of variables it can handle which presents a challenge when factorizing large matrices. We propose a sampling based approach to overcome this challenge, allowing us to factorize large rectangular matrices. In addition to these methods, we also propose a simple baseline algorithm which outperforms our more sophisticated methods in a few situations. We run experiments on the Fujitsu Digital Annealer, a quantum-inspired complementary metal-oxide-semiconductor (CMOS) annealer, on both synthetic and real data, including gene expression data. These experiments show that our approach is able to produce more accurate BMFs than competing methods.


2021 ◽  
Author(s):  
Liyancang Li ◽  
Wuyue Yue Wu

Abstract Antlion optimization algorithm has good search and development capabilities, but the influence weight of elite ant lions is reduced in the later stage of optimization, which leads to slower algorithm convergence and easy to fall into local optimization. For this purpose, an antlion optimization algorithm based on immune cloning was proposed. In the early stage, the reverse learning strategy was used to initialize the ant population. The Cauchy mutation operator was added to the elite antlion update to improve the later development ability of the algorithm; finally, the antlion was cloned and mutated with the immune clone selection algorithm to change the position and fitness value of the antlion, and further improve the algorithm's global optimization ability and convergence accuracy. 10 test functions and a 0~1 backpack were used to evaluate the optimization ability of the algorithm and applied to the size and layout optimization problems of the truss structure. The optimization effect was found to be good through the force effect diagram. It is verified that ICALO is applied to combinatorial optimization problems with faster convergence speed and higher accuracy. It provides a new method for structural optimization.This article is submitted as original content. The authors declare that they have no competing interests.


Author(s):  
Ingudam Chitrasen Meitei ◽  
Rajen Pudur

<p>Penetration of renewable sources to the grid is always a problem for electrical engineers, apart from reliability and efficiency, cost optimization is also a big concern among them. Wind, solar and battery hybrid combinations (WSB-HPS) are also very common among hybrid systems, but this WSBHPS combines wind and solar energy power generation reduces the charge and discharge time of the battery. Therefore, this system improves the reliability of the power supply by fully utilizing the wind and solar power generation and improves the charging and discharging state of the battery and hence reduces the whole cost as the investment in battery is reduced. backtrack search algorithm (BSA) is the highly efficient and powerful algorithm to solve combinatorial optimization problems. In this paper an attempt is made to optimize the hybrid combination using BSA in the matrix laboratory (MATLAB) environment and comparable study is made using HOMER. A complete optimised data is generated for a particular area in Manipur and reduced cost is suggested.</p>


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Junyi Huang ◽  
Yisheng Fang ◽  
Zhichao Ruan

AbstractRecently, spatial photonic Ising machines (SPIM) have been demonstrated to compute the minima of Hamiltonians for large-scale spin systems. Here we propose to implement an antiferromagnetic model through optoelectronic correlation computing with SPIM. Also we exploit the gauge transformation which enables encoding the spins and the interaction strengths in a single phase-only spatial light modulator. With a simple setup, we experimentally show the ground-state-search acceleration of an antiferromagnetic model with 40000 spins in number-partitioning problem. Thus such an optoelectronic computing exhibits great programmability and scalability for the practical applications of studying statistical systems and combinatorial optimization problems.


Sign in / Sign up

Export Citation Format

Share Document