scholarly journals Model Optimization and Calculation Method of Multi-Target Curved Motion Parameters Measurement Using Multi-Screen Intersection Test Mechanism

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 147872-147879
Author(s):  
Hanshan Li ◽  
Xiaoqian Zhang ◽  
Xuewei Zhang ◽  
Liping Lu
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Zhigui Ren ◽  
Junli Wang ◽  
Jin Chen ◽  
Junfeng Zhang ◽  
Jurong Liu ◽  
...  

The digging resistance in a normal state is the key to excavator design and automated excavation. It is difficult to accurately predict, simulate, or directly measure the digging resistance in a normal state due to uncertainties in the soil properties and excavation parameters. In this paper, a research idea is proposed that uses the working device as the entry point to indirectly calculate the digging resistance in a normal state by measuring the motion parameters and the cylinder pressure intensity. Based on the rule of combination for spatial force systems, a method for combining and projecting the system of the digging resistance is proposed in which the system is projected as six parts, and the tangential force, normal force, and bending moment in the plane of symmetry of the working device are the objects of the solution to avoid redundant equations. Based on kinematics and dynamics models of the excavator and the force and moment equilibrium conditions of the working device, equations for the active-side calculation of the incomplete digging resistance are derived. Based on these equations, the motion parameters of the working device and data on the cylinder pressure intensity obtained by measurement are used to calculate the incomplete digging resistance. The validation scheme and process proposed use the incomplete digging resistance as the external load to obtain the simulated stress of the working device through transient analysis. The simulated stress and the measured stress corresponding to the position of the measurement point are extracted and compared. The results show that there is a difference in the size of the numerical value between the simulated and measured stress, but the variation law is highly consistent, which validates the calculation method. In this paper, an active-side calculation method is provided for the incomplete digging resistance in a normal state without considering the soil-tool interaction relationships, which lays a theoretical foundation for the study of the digging resistance characteristics in a normal state, as well as excavator design and automated excavation.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Guoshuai Zang ◽  
Haizhu Lu ◽  
Guanglai Jin ◽  
Zhixiang Zhang

Sign in / Sign up

Export Citation Format

Share Document