scholarly journals Energy Storage Auxiliary Frequency Modulation Control Strategy Considering ACE and SOC of Energy Storage

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 26271-26277
Author(s):  
Gaojun Meng ◽  
Qingqing Chang ◽  
Yukun Sun ◽  
Yufei Rao ◽  
Feng Zhang ◽  
...  
Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2645
Author(s):  
Gaojun Meng ◽  
Yang Lu ◽  
Haitao Liu ◽  
Yuan Ye ◽  
Yukun Sun ◽  
...  

In order to efficiently use energy storage resources while meeting the power grid primary frequency modulation requirements, an adaptive droop coefficient and SOC balance-based primary frequency modulation control strategy for energy storage is proposed. Taking the SOC of energy storage battery as the control quantity, the depth of energy storage output is adaptively adjusted to prevent the saturation or exhaustion of energy storage SOC. The balanced control strategy is introduced to realize the rational utilization of resources and the fast balance of SOC in the process of primary frequency modulation of energy storage battery under different charge states. Then, four evaluation indexes are proposed to evaluate the effect of primary frequency modulation and SOC maintenance. Taking a regional power grid as an example, a simulation analysis is carried out under step load disturbance and continuous load disturbance. According to the simulation results, the proposed control strategy is effective in power system frequency regulation and battery SOC maintenance.


Author(s):  
Chunlai Li ◽  
Shun Yuan

Abstract In order to improve the friendliness of the grid connection of new energy power generation, the new energy photovoltaic (PV) unit is equivalent to a synchronous generator in the power system and a virtual synchronous generator (VSG)-controlled PV energy storage complementary grid-connected power generation system model is established and studied to analyze the VSG. When power is supplied to the load together with the power grid, the energy storage unit inside the VSG will release and store the electrical energy according to the fluctuation of the PV output, which plays the role of the adjustment of the prime mover; in the case of load power fluctuations, and power grid assume the corresponding active power regulation according to their capacity. The amount of active power adjustment to jointly and maintain the power balance inside the system under the condition of fluctuating load power. The overall system architecture and control strategy of PV grid-connected inverter based on VSG algorithm are proposed. The PV-VSG proposed here not only takes into account the maximum power point tracking control but also has independent participation in the power supply. A series of characteristics of synchronous generators, such as network frequency modulation voltage regulation and inertia damping, can effectively improve the new energy PV power generation system and promote the new energy consumption. The results of system simulation and field demonstration operation fully show the effectiveness and correctness of the proposed control strategy based on VSG algorithm.


Sign in / Sign up

Export Citation Format

Share Document