joint frequency
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 28)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Zhiping Cheng ◽  
Dongqiang Jia ◽  
Zhongwen Li ◽  
Hannian Zhang

Author(s):  
Galya V. Klink ◽  
Ksenia R. Safina ◽  
Sofya K. Garushyants ◽  
Mikhail Moldovan ◽  
Elena Nabieva ◽  
...  

Abstract In 2021, the COVID-19 pandemic is characterized by global spread of several lineages with evidence for increased transmissibility. Russia is among the countries with the highest number of confirmed COVID-19 cases, making it a potential hotspot for emergence of novel variants. Here, we show that among the globally significant variants of concern, alpha (B.1.1.7), beta (B.1.351) or gamma (P.1), none have been sampled in Russia before January 2021. Instead, between summer 2020 and spring 2021, the epidemic in Russia has been characterized by the spread of two lineages that are rare elsewhere: B.1.1.317 and a sublineage of B.1.1 including B.1.1.397 (hereafter, B.1.1.397+). Their frequency has increased in different parts of Russia. Mutational composition and frequency dynamics suggest that B.1.1.317 and B.1.1.397+ may be more transmissible than the previously predominant B.1.1. On top of these lineages, in January 2021, B.1.1.7 emerged in Russia, reaching the frequency of 17.4% (95% C.I.: 12.0%-24.4%) in March 2021. Additionally, we identify three novel distinct lineages, AT.1, B.1.1.524 and B.1.1.525, that have started to spread, together reaching the frequency of 11.8% (95% C.I.: 7.5%-18.1%) in March 2021. These lineages carry combinations of several notable mutations, including the S:E484K mutation of concern, deletions at a recurrent deletion region of the spike glycoprotein (S:Δ140-142, S:Δ144 or S:Δ136-144), and nsp6:Δ106-108 (also known as ORF1a:Δ3675-3677). Community-based PCR testing indicates that these variants have continued to spread in April 2021, with the frequency of B.1.1.7 reaching 21.7% (95% C.I.: 12.3%-35.6%), and the joint frequency of B.1.1.524 and B.1.1.525, 15.2% (95% C.I.: 7.6%-28.2%). Although these variants have been displaced by the onset of delta variant in May-June 2021, the frequency increase of lineages B.1.1.317, B.1.1.397+, AT.1, B.1.1.524 and B.1.1.525 suggest that the combinations of mutations observed in them could have increased the rate of their spread.


2021 ◽  
Author(s):  
Galya Klink ◽  
Ksenia R Safina ◽  
Sofya K. Garushyants ◽  
Mikhail Moldovan ◽  
Elena Nabieva ◽  
...  

In 2021, the COVID-19 pandemic is characterized by global spread of several lineages with evidence for increased transmissibility. Russia is among the countries with the highest number of confirmed COVID-19 cases, making it a potential hotspot for emergence of novel variants. Here, we show that among the globally significant variants of concern, B.1.1.7 (501Y.V1), B.1.351 (501Y.V2) or P.1 (501Y.V3), none have been sampled in Russia before January 2021. Instead, since summer 2020, the epidemic in Russia has been characterized by the spread of two lineages that are rare elsewhere: B.1.1.317 and a sublineage of B.1.1 including B.1.1.397 (hereafter, B.1.1.397+). In February-March 2021, these lineages reached frequencies of 26.9% (95% C.I.: 23.1%-31.1%) and 32.8% (95% C.I.28.6%-37.2%) respectively in Russia. Their frequency has increased in different parts of Russia. Together with the fact that these lineages carry several spike mutations of interest, this suggests that B.1.1.317 and B.1.1.397+ may be more transmissible than the previously predominant B.1.1, although there is no direct data on change in transmissibility. Comparison of frequency dynamics of lineages carrying subsets of characteristic mutations of B.1.1.317 and B.1.1.397+ suggests that, if indeed some of these mutations affect transmissibility, the transmission advantage of B.1.1.317 may be conferred by the (S:D138Y+S:S477N+S:A845S) combination; while the advantage of B.1.1.397+ may be conferred by the S:M153T change. On top of these lineages, in January 2021, B.1.1.7 emerged in Russia, reaching the frequency of 17.4% (95% C.I.: 12.0%-24.4%) in March 2021. Additionally, we identify three novel distinct lineages, AT.1, and two lineages prospectively named B.1.1.v1 and B.1.1.v2, that have started to spread, together reaching the frequency of 11.8% (95% C.I.: 7.5%-18.1%) in March 2021. These lineages carry combinations of several notable mutations, including the S:E484K mutation of concern, deletions at a recurrent deletion region of the spike glycoprotein (S:Δ140-142, S:Δ144 or S:Δ136-144), and nsp6:Δ106-108 (also known as ORF1a:Δ3675-3677). Community-based PCR testing indicates that these variants have continued to spread in April 2021, with the frequency of B.1.1.7 reaching 21.7% (95% C.I.: 12.3%-35.6%), and the joint frequency of B.1.1.v1 and B.1.1.v2, 15.2% (95% C.I.: 7.6%-28.2%). The combinations of mutations observed in B.1.1.317, B.1.1.397+, AT.1, B.1.1.v1 and B.1.1.v2 together with frequency increase of these lineages make them candidate variants of interest.


2021 ◽  
Vol 67 (3) ◽  
pp. 3907-3919
Author(s):  
Haiming Du ◽  
Han Gao ◽  
Wenjing Jia

Sign in / Sign up

Export Citation Format

Share Document