reliability improvement
Recently Published Documents


TOTAL DOCUMENTS

1114
(FIVE YEARS 210)

H-INDEX

30
(FIVE YEARS 4)

Author(s):  
V. A. Shorin ◽  
V. S. Litvinov ◽  
A. A. Sagdeev ◽  
A. V. Shorin ◽  
N. P. Gorlenko ◽  
...  

The paper describes the one-sided welding method for steel structures based on the rational choice of the inverse angle of butt-welded elements of Belgian steel for the manufacture of tank bottom elements of intended for phosphoric acid storage in a construction site. It is shown that the most expedient method for ensuring the design geometry of the tank with a minimum stress of 1.4507 of the material structure, is the bottom sheets preset for welding at a reverse angle of 12 degrees.The proposed method improves the tank reliability for storing aggressive products, its trouble-free and technical safety during the operation. The need is shown for studying the replacement of imported steel by Russian steel to manufacture tanks from alternative nonmetallic materials.


Electronics ◽  
2021 ◽  
Vol 10 (24) ◽  
pp. 3182
Author(s):  
Afroz Alam ◽  
Mohd Tariq ◽  
Mohammad Zaid ◽  
Preeti Verma ◽  
Marwan Alsultan ◽  
...  

There is a need for the optimal positioning of protective devices to maximize customers satisfaction per their demands. Such arrangement advances the distribution system reliability to maximum achievable. Thus, radial distribution system (RDS) reliability can be improved by placing reclosers at suitable feeder sections. This article presents comprehensive details of an attempt to determine the reclosers’ optimal location in an RDS to maximize the utility profit by reliability improvement. Assessment of different reliability indices such as SAIDI, SAIFI, CAIFI, CAIDI, etc., with recloser placement, exhibits a considerable improvement in these indices in contrast with the absence of recloser. Consequently, a new bidirectional formulation has been proposed for the optimized arrangement of reclosers’. This formulation efficiently handles the bidirectional power flow, resulting from distributed generation (DG) unit (s) in the system. The proposed model has been solved for a test system by utilizing the Genetic algorithm (GA) optimization method. Later, test results conclude that reclosers’ optimal placement contributes significantly towards utility profit with minimum investment and outage costs.


2021 ◽  
Author(s):  
Jie Ding ◽  
Jinho Choi

<div>In this paper, a successive interference cancellation (SIC) aided K-repetition scheme is proposed to support contention-based mission-critical machine-type communication (MTC) in cell-free (CF) massive multiple-input and multipleoutput (MIMO) systems. With the assistance of a tailored deep neural network (DNN) based preamble multiplicity estimator, the proposed SIC in K-repetition is capable of fully cancelling the interference signals, which leads to the reliability improvement in CF massive MIMO. Simulation results show the accuracy of preamble multiplicity estimation by the proposed DNN, and</div><div>demonstrate that, compared to the existing schemes, the proposed SIC scheme can achieve an improvement of two orders of magnitude in terms of block error rate (BLER) under a given latency constraint. Moreover, when the number of access points (APs) is sufficiently large, employing the proposed SIC scheme provides a great potential to meet ultra-reliable and low-latency requirements, e.g., 10<sup>-5 </sup>BLER and 1 ms access latency, for crowd mission-critical applications, which is far beyond the capabilities of the existing schemes.</div>


2021 ◽  
Author(s):  
Jie Ding ◽  
Jinho Choi

<div>In this paper, a successive interference cancellation (SIC) aided K-repetition scheme is proposed to support contention-based mission-critical machine-type communication (MTC) in cell-free (CF) massive multiple-input and multipleoutput (MIMO) systems. With the assistance of a tailored deep neural network (DNN) based preamble multiplicity estimator, the proposed SIC in K-repetition is capable of fully cancelling the interference signals, which leads to the reliability improvement in CF massive MIMO. Simulation results show the accuracy of preamble multiplicity estimation by the proposed DNN, and</div><div>demonstrate that, compared to the existing schemes, the proposed SIC scheme can achieve an improvement of two orders of magnitude in terms of block error rate (BLER) under a given latency constraint. Moreover, when the number of access points (APs) is sufficiently large, employing the proposed SIC scheme provides a great potential to meet ultra-reliable and low-latency requirements, e.g., 10<sup>-5 </sup>BLER and 1 ms access latency, for crowd mission-critical applications, which is far beyond the capabilities of the existing schemes.</div>


2021 ◽  
Vol 127 ◽  
pp. 114399
Author(s):  
Matheus Rabelo ◽  
Muhammad Aleem Zahid ◽  
Khushabu Agrawal ◽  
KyungSoo Kim ◽  
Eun-Chel Cho ◽  
...  

Author(s):  
Junyan Wu ◽  
Weiyong Ding ◽  
Yiying Zhang ◽  
Peng Zhao

Sign in / Sign up

Export Citation Format

Share Document