synchronous generator
Recently Published Documents


TOTAL DOCUMENTS

4075
(FIVE YEARS 1287)

H-INDEX

50
(FIVE YEARS 12)

2022 ◽  
Vol 8 ◽  
pp. 1704-1717
Author(s):  
Khalid Mehmood Cheema ◽  
Naveed Ishtiaq Chaudhary ◽  
Muhammad Faizan Tahir ◽  
Kashif Mehmood ◽  
Muhammad Mudassir ◽  
...  

Author(s):  
Dmitry Dezhin ◽  
Roman Ilyasov

The use of liquid hydrogen as a fuel will be inevitable in the aviation of the future. This statement means that manufacturers will also implement liquid hydrogen for cooling all superconducting aviation equipment of an electric propulsion system. The development of fully electric aircraft is the most promising solution in this case. Scientists from the Department of electrical machines and power electronics of Moscow aviation institute have conducted calculations and theoretical researches of critical specific mass-dimensional parameters (MW/ton and MW/m3 at 21 K) of fully superconducting aviation synchronous generator of the electric propulsion system. The results are in this article. The article discusses the results 3D finite element modeling (FEM) simulation of a 5 MW fully superconducting synchronous generator with combined excitation. Superconducting armature and axial excitation windings based on second generation high temperature superconductors (HTS-2G) are located on the stator, which makes it possible to contactlessness and the absence of sliding seals. A dry gap will reduce gas-dynamic losses and increase the nominal peripheral speed of the rotor. The use of liquid hydrogen as a coolant makes it possible to significantly increase the linear load of the generator, and high current densities to reduce the cross-sectional area of the coils, which will make it possible to place them in individual cryostats in the future. Individual cryostats will allow to remove the heat release of magnetic losses from the cryogenic zone and reduce the consumption of refrigerant. For the purpose of internal redundancy of the HTS coils, the machine has a complete set of reserve winding made of ultrapure aluminum, also cooled by liquid hydrogen. If the superconducting coils get out of the stand, the generator will provide 15 % power on standby


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Ji-Hun Lee ◽  
Hoon-Ki Lee ◽  
Young-Geun Lee ◽  
Jeong-In Lee ◽  
Seong-Tae Jo ◽  
...  

In this study, the characteristic analysis of a permanent magnet synchronous generator was performed using the analytical method, and the validity of the analytical method was compared with that of the finite element method (FEM). For the initial design, the rotor size was selected using the torque per rotor volume method, and the stator size was selected according to the saturation of the stator iron core. In addition, fast Fourier transform analysis was performed to determine the appropriate magnet thickness point, and it was confirmed that the open circuit and armature reaction magnetic flux densities were consistent with the FEM analysis results. Based on the analytical method, the generator circuit constants (phase resistance, back EMF, and inductance) were derived to construct an equivalent circuit. By applying the equivalent circuit method to the derived circuit constants, the accuracy of the equivalent circuit method was confirmed by comparing the FEM and experimental results.


2022 ◽  
Author(s):  
helmy El-Zoghby ◽  
Haitham S. Ramadan ◽  
Hassan Haes Alhelou

Abstract Modern energy infrastructures may face critical impacts on distributed generation and microgrids in presence of renewable and conventional energy sources. Fast restorations for these networks through proposing convenient proactive protection systems become mandatory for securing energy particularly after severe faults. This paper deals with presenting a descriptive modelling and comprehensive analysis of both steam and wind turbines using optimal real time emulators with unique testbench. Based on the dynamics of each turbine, both emulators are performed using 4kW, 180V, 1500r.p.m separately exited DC motor coupled to 2kW, 380V, 50Hz, 1500r.p.m three-phase synchronous generator. For real-time interface implementation, the mathematical models of steam and wind turbines are realized using LabVIEWTM software. The characterization and verification of both emulated steam and wind turbines are examined at different normal operating conditions in terms of steam valve position and wind speed, respectively. To regulate the current for both systems despite their diverse dynamics, a simple industrial proportional-integral (PI) controller is considered. Unlike other artificial intelligence-based controllers, the offline-controller gains are scheduled using genetic algorithm (GA) via MatlabTM software to ensure the due fast response to cope with unexpected faults. The experimental validity of both emulators is tested at the most severe abnormal operating conditions. The three-phase short circuit is considered at the generator terminals with different fault periods until reaching out-of-step conditions. From numerical analysis and experimental results, the characterization of both emulated steam and wind turbines explicitly mimics their real large-scale turbines in normal conditions. The emulators’ fast responses using the proposed GA-PI control approach are verified. Besides, the experimental dynamic behavior convergence and interoperability between the emulated and real systems for both steam and wind turbines are validated under severe conditions. The practical results confirm the fast-nature performance of the GA in avoid risky instability conditions.


Sign in / Sign up

Export Citation Format

Share Document