Improved approach for calculating model parameters in speaker recognition using Gaussian Mixture Models

Author(s):  
Prashant Metkar ◽  
Aaron Cohen ◽  
Keshab Parhi
2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Lena Sembach ◽  
Jan Pablo Burgard ◽  
Volker Schulz

AbstractGaussian Mixture Models are a powerful tool in Data Science and Statistics that are mainly used for clustering and density approximation. The task of estimating the model parameters is in practice often solved by the expectation maximization (EM) algorithm which has its benefits in its simplicity and low per-iteration costs. However, the EM converges slowly if there is a large share of hidden information or overlapping clusters. Recent advances in Manifold Optimization for Gaussian Mixture Models have gained increasing interest. We introduce an explicit formula for the Riemannian Hessian for Gaussian Mixture Models. On top, we propose a new Riemannian Newton Trust-Region method which outperforms current approaches both in terms of runtime and number of iterations. We apply our method on clustering problems and density approximation tasks. Our method is very powerful for data with a large share of hidden information compared to existing methods.


Identification of a person’s voice from the different voices is known as speaker recognition. The speech signals of individuals are selected by means of speaker recognition or identification. In this work, an efficient method for speaker recognition is made by using Discrete Wavelet Transform (DWT) features and Gaussian Mixture Models (GMM) for classification is presented. The input speech signal features are decomposed by DWT into subband coefficients. The DWT subband coefficient features are the input for the classification. Classification is made by GMM classifier at 4, 8, 16 and 32 Gaussian component levels. Results show a better accuracy of 96.18% speaker signals using DWT features and GMM classifier


Author(s):  
AMITA PAL ◽  
SMARAJIT BOSE ◽  
GOPAL K. BASAK ◽  
AMITAVA MUKHOPADHYAY

For solving speaker identification problems, the approach proposed by Reynolds [IEEE Signal Process. Lett.2 (1995) 46–48], using Gaussian Mixture Models (GMMs) based on Mel Frequency Cepstral Coefficients (MFCCs) as features, is one of the most effective available in the literature. The use of GMMs for modeling speaker identity is motivated by the interpretation that the Gaussian components represent some general speaker-dependent spectral shapes, and also by the capability of Gaussian mixtures to model arbitrary densities. In this work, we have initially illustrated, with the help of a new bilingual speech corpus, how the well-known principal component transformation, in conjunction with the principle of classifier combination can be used to enhance the performance of the MFCC-GMM speaker recognition systems significantly. Subsequently, we have emphatically and rigorously established the same using the benchmark speech corpus NTIMIT. A significant outcome of this work is that the proposed approach has the potential to enhance the performance of any speaker recognition system based on correlated features.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hesam Farsaie Alaie ◽  
Chakib Tadj

We make use of information inside infant’s cry signal in order to identify the infant’s psychological condition. Gaussian mixture models (GMMs) are applied to distinguish between healthy full-term and premature infants, and those with specific medical problems available in our cry database. Cry pattern for each pathological condition is created by using adapted boosting mixture learning (BML) method to estimate mixture model parameters. In the first experiment, test results demonstrate that the introduced adapted BML method for learning of GMMs has a better performance than conventional EM-based reestimation algorithm as a reference system in multipathological classification task. This newborn cry-based diagnostic system (NCDS) extracted Mel-frequency cepstral coefficients (MFCCs) as a feature vector for cry patterns of newborn infants. In binary classification experiment, the system discriminated a test infant’s cry signal into one of two groups, namely, healthy and pathological based on MFCCs. The binary classifier achieved a true positive rate of 80.77% and a true negative rate of 86.96% which show the ability of the system to correctly identify healthy and diseased infants, respectively.


Sign in / Sign up

Export Citation Format

Share Document