scholarly journals A Riemannian Newton trust-region method for fitting Gaussian mixture models

2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Lena Sembach ◽  
Jan Pablo Burgard ◽  
Volker Schulz

AbstractGaussian Mixture Models are a powerful tool in Data Science and Statistics that are mainly used for clustering and density approximation. The task of estimating the model parameters is in practice often solved by the expectation maximization (EM) algorithm which has its benefits in its simplicity and low per-iteration costs. However, the EM converges slowly if there is a large share of hidden information or overlapping clusters. Recent advances in Manifold Optimization for Gaussian Mixture Models have gained increasing interest. We introduce an explicit formula for the Riemannian Hessian for Gaussian Mixture Models. On top, we propose a new Riemannian Newton Trust-Region method which outperforms current approaches both in terms of runtime and number of iterations. We apply our method on clustering problems and density approximation tasks. Our method is very powerful for data with a large share of hidden information compared to existing methods.

2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Zuo-liang Xu ◽  
Qing-hua Ma ◽  
Li-ping Wang

AbstractIn this paper, we aim to calibration pricing models from market prices. We investigate the problem of calibrating the parameters using the trust region method from given price data. We start with the Hull–White model and formulate the problem by obtaining the first kind integral equation, and then consider the parameter recovery problem of the Black–Scholes model. We apply trust region algorithm for numerical retrieval problems. Numerical simulations are given to illustrate the feasibility of our proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hesam Farsaie Alaie ◽  
Chakib Tadj

We make use of information inside infant’s cry signal in order to identify the infant’s psychological condition. Gaussian mixture models (GMMs) are applied to distinguish between healthy full-term and premature infants, and those with specific medical problems available in our cry database. Cry pattern for each pathological condition is created by using adapted boosting mixture learning (BML) method to estimate mixture model parameters. In the first experiment, test results demonstrate that the introduced adapted BML method for learning of GMMs has a better performance than conventional EM-based reestimation algorithm as a reference system in multipathological classification task. This newborn cry-based diagnostic system (NCDS) extracted Mel-frequency cepstral coefficients (MFCCs) as a feature vector for cry patterns of newborn infants. In binary classification experiment, the system discriminated a test infant’s cry signal into one of two groups, namely, healthy and pathological based on MFCCs. The binary classifier achieved a true positive rate of 80.77% and a true negative rate of 86.96% which show the ability of the system to correctly identify healthy and diseased infants, respectively.


2017 ◽  
Vol 34 (10) ◽  
pp. 1399-1414 ◽  
Author(s):  
Wanxia Deng ◽  
Huanxin Zou ◽  
Fang Guo ◽  
Lin Lei ◽  
Shilin Zhou ◽  
...  

2011 ◽  
Vol 141 ◽  
pp. 92-97
Author(s):  
Miao Hu ◽  
Tai Yong Wang ◽  
Bo Geng ◽  
Qi Chen Wang ◽  
Dian Peng Li

Nonlinear least square is one of the unconstrained optimization problems. In order to solve the least square trust region sub-problem, a genetic algorithm (GA) of global convergence was applied, and the premature convergence of genetic algorithms was also overcome through optimizing the search range of GA with trust region method (TRM), and the convergence rate of genetic algorithm was increased by the randomness of the genetic search. Finally, an example of banana function was established to verify the GA, and the results show the practicability and precision of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document