Optical Flow Feature Based for Fire Detection on Video Data

Author(s):  
Chastine Fatichah ◽  
Sirria Panah Alam ◽  
Dini Adni Navastara
2007 ◽  
Author(s):  
Mikhail G. Danilouchkine ◽  
Frits Mastik ◽  
Antonius F. W. van der Steen
Keyword(s):  

Action recognition (AR) plays a fundamental role in computer vision and video analysis. We are witnessing an astronomical increase of video data on the web and it is difficult to recognize the action in video due to different view point of camera. For AR in video sequence, it depends upon appearance in frame and optical flow in frames of video. In video spatial and temporal components of video frames features play integral role for better classification of action in videos. In the proposed system, RGB frames and optical flow frames are used for AR with the help of Convolutional Neural Network (CNN) pre-trained model Alex-Net extract features from fc7 layer. Support vector machine (SVM) classifier is used for the classification of AR in videos. For classification purpose, HMDB51 dataset have been used which includes 51 Classes of human action. The dataset is divided into 51 action categories. Using SVM classifier, extracted features are used for classification and achieved best result 95.6% accuracy as compared to other techniques of the state-of- art.v


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shaoping Zhu ◽  
Limin Xia

A novel method based on hybrid feature is proposed for human action recognition in video image sequences, which includes two stages of feature extraction and action recognition. Firstly, we use adaptive background subtraction algorithm to extract global silhouette feature and optical flow model to extract local optical flow feature. Then we combine global silhouette feature vector and local optical flow feature vector to form a hybrid feature vector. Secondly, in order to improve the recognition accuracy, we use an optimized Multiple Instance Learning algorithm to recognize human actions, in which an Iterative Querying Heuristic (IQH) optimization algorithm is used to train the Multiple Instance Learning model. We demonstrate that our hybrid feature-based action representation can effectively classify novel actions on two different data sets. Experiments show that our results are comparable to, and significantly better than, the results of two state-of-the-art approaches on these data sets, which meets the requirements of stable, reliable, high precision, and anti-interference ability and so forth.


2016 ◽  
Vol 7 (4) ◽  
pp. 299-310 ◽  
Author(s):  
Yong-Jin Liu ◽  
Jin-Kai Zhang ◽  
Wen-Jing Yan ◽  
Su-Jing Wang ◽  
Guoying Zhao ◽  
...  

Author(s):  
R. Feng ◽  
X. Li ◽  
H. Shen

<p><strong>Abstract.</strong> Mountainous remote sensing images registration is more complicated than in other areas as geometric distortion caused by topographic relief, which could not be precisely achieved via constructing local mapping functions in the feature-based framework. Optical flow algorithm estimating motion of consecutive frames in computer vision pixel by pixel is introduced for mountainous remote sensing images registration. However, it is sensitive to land cover changes that are inevitable for remote sensing image, resulting in incorrect displacement. To address this problem, we proposed an improved optical flow estimation concentrated on post-processing, namely displacement modification. First of all, the Laplacian of Gaussian (LoG) algorithm is employed to detect the abnormal value in color map of displacement. Then, the abnormal displacement is recalculated in the interpolation surface constructed by the rest accurate displacements. Following the successful coordinate transformation and resampling, the registration outcome is generated. Experiments demonstrated that the proposed method is insensitive in changeable region of mountainous remote sensing image, generating precise registration, outperforming the other local transformation model estimation methods in both visual judgment and quantitative evaluation.</p>


Author(s):  
K.Ranga Narayana, Et. al.

In present scenario, tracking of target in videos with low resolution is most important task.  The problem aroused due to lack of discriminatory data that have low visual visibility of the moving objects. However, earlier detection methods often extract explanations around fascinating points of space or exclude mathematical features in moving regions, resulting in limited capabilities to detect better video functions. To overcome the above problem, in this paper a novel method which recognizes a person from low resolution videos is proposed. A Three step process is implemented in which during the first step, the video data acquired from a low-resolution video i.e. from three different datasets. The acquired video is divided into frames and converted into gray scale from RGB. Secondly, background subtraction is performed using LBP and thereafter Histogram of Optical Flow (HOF) descriptors is extracted from optical flow images for motion estimation. In the third step, the eigen features are extracted and optimized using particle swarm optimization (PSO) model to eliminate redundant information and obtain optimized features from the video which is being processed. Finally to find a person from low resolution videos, the features are classified by Support Vector Machine (SVM) and parameters are evaluated. Experimental results are performed on VIRAT, Soccer and KTH datasets and demonstrated that the proposed detection approach is superior to the previous method


Sign in / Sign up

Export Citation Format

Share Document