atmospheric turbulence
Recently Published Documents


TOTAL DOCUMENTS

3252
(FIVE YEARS 579)

H-INDEX

74
(FIVE YEARS 8)

Author(s):  
Huu Ai Duong ◽  
Van Loi Nguyen ◽  
Khanh Ty Luong

<span>The continuous development of internet of things (IoT) technology enables many devices to be interconnected through the external environment. Meanwhile, 5G technology provides an enhanced quality of services with high data transmission rates, requiring IoT implementation in the 5G architecture. Free-space optical communication (FSO) is considered a promising technique that can provide high-speed communication links, so FSO is an optimal choice for wireless networks to fulfill the full potential of 5G technology, providing speeds of 100 Gb/s or more. By implementing 5G features in IoT, IoT coverage and performance will be enhanced by using FSO models. Therefore, the paper proposed and investigated the multiple-input and multiple-output/free-space optical communication (MIMO/FSO) model using subcarrier quadrature amplitude modulation (SC-QAM) and relay stations over atmospheric turbulence channels by log-normal and gamma-gamma distribution under different turbulence conditions. The performance is examined based on the average channel capacity (ACC), which is expressed in terms of average spectral efficiency (ASE) parameters while changing the different parameters of the model. The mathematical formulas of ACC for atmospheric turbulence cases are calculated and discussed the influence of turbulence strength, the different number of relay stations, misalignment effects, and different MIMO configurations.</span>


Author(s):  
Alexander Shelekhov ◽  
Aleksey Afanasiev ◽  
Evgenia Shelekhova ◽  
Alexey Kobzev ◽  
Alexey Tel’minov ◽  
...  

The capabilities of a quadcopter in the hover mode for low-altitude sensing of atmospheric turbulence with high spatial resolution in urban areas characterized by complex orography are investigated. The studies were carried out in different seasons (winter, spring, summer, and fall), and the quadcopter hovered in the immediate vicinity of ultrasonic weather stations. The DJI Phantom 4 Pro quadcopter and AMK-03 ultrasonic weather stations installed in different places of the studied territory were used in the experiment. The smoothing procedure was used to main regularities in the behavior of the longitudinal and lateral spectra of turbulence in the inertial and energy production ranges. The longitudinal and lateral turbulence scales were estimated by the least-square fit method with the von Karman model as a regression curve. It is shown that the turbulence spectra obtained with DJI Phantom 4 Pro and AMK-03 generally coincide with minor differences observed in the high-frequency region of the spectrum. In the inertial range, the behavior of the turbulence spectra shows that they obey the Kolmogorov-Obukhov &ldquo;5/3&rdquo; law. In the energy production range, the longitudinal and lateral turbulence scales and their ratio measured by DJI Phantom 4 Pro and AMK-03 agree to a good accuracy. Discrepancies in the data obtained with the quadcopter and the ultrasonic weather stations at the territory with complex orography are explained by the partial correlation of the wind velocity series at different measurement points and the influence of the inhomogeneous surface.


2022 ◽  
Vol 21 (12) ◽  
pp. 298
Author(s):  
Zi-Yue Wang ◽  
De-Qing Ren ◽  
Raffi Saadetian

Abstract Measurements of the daytime seeing profile of the atmospheric turbulence are crucial for evaluating a solar astronomical site so that research on the profile of the atmospheric turbulence as a function of altitude C n 2 ( h n ) becomes more and more critical for performance estimation and optimization of future adaptive optics (AO) including the multi-conjugate adaptive optics (MCAO) systems. Recently, the S-DIMM+ method has been successfully used to measure daytime turbulence profiles above the New Solar Telescope (NST) on Big Bear Lake. However, such techniques are limited by the requirement of using a large solar telescope which is not realistic for a new potential astronomical site. Meanwhile, the A-MASP (advanced multiple-aperture seeing profiler) method is more portable and has been proved that can reliably retrieve the seeing profile up to 16 km with the Dunn Solar Telescope (DST) on the National Solar Observatory (Townson, Kellerer et al.). But the turbulence of the ground layer is calculated by combining A-MASP and S-DIMM+ (Solar Differential Image Motion Monitor+) due to the limitation of the two-individual-telescopes structure. To solve these problems, we introduce the two-telescope seeing profiler (TTSP) which consists of two portable individual telescopes. Numerical simulations have been conducted to evaluate the performance of TTSP. We find our TTSP can effectively retrieve seeing profiles of four turbulence layers with a relative error of less than 4% and is dependable for actual seeing measurement.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Bing Guan ◽  
Haiyang Yu ◽  
Wei Song ◽  
Jaeho Choi

For the free-space optical (FSO) communication system, the spatial coherence of a laser beam is influenced obviously as it propagates through the atmosphere. This loss of spatial coherence limits the degree to which the laser beam is collimated or focused, resulting in a significant decrease in the power level of optical communication and radar systems. In this work, the analytic expressions of wave structure function for plane and spherical wave propagation through anisotropic non-Kolmogorov turbulence in a horizontal path are derived. Moreover, the new expressions for spatial coherence radius are obtained considering different scales of atmospheric turbulence. Using the newly obtained expressions for the spatial coherent radius, the effects of the inner scales and the outer scales of the turbulence, the power law exponent, and the anisotropic factor are analyzed. The analytical simulation results show that the wave structure functions are greatly influenced by the power law exponent α , the anisotropic factor ζ , the turbulence strength σ ~ R 2 , and the turbulence scales. Moreover, the spatial coherence radiuses are also significantly affected by the anisotropic factor ζ and the turbulence strength σ ~ R 2 , while they are gently influenced by the power law exponent α and the inner scales of the optical waves.


2021 ◽  
Author(s):  
Victor V. Nosov ◽  
Vladimir P. Lukin ◽  
Evgeny V. Nosov ◽  
Andrey V. Torgaev

2021 ◽  
Author(s):  
Alexander P. Shelekhov ◽  
Aleksey Afanasiev ◽  
Evgenia Shelekhova ◽  
Alexey Kobzev ◽  
Alexey Tel’minov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document