Multiple stopping time POMDPs: Structural results

Author(s):  
Vikram Krishnamurthy ◽  
Anup Aprem ◽  
Sujay Bhatt
2011 ◽  
Vol 21 (4) ◽  
pp. 1365-1399 ◽  
Author(s):  
Magdalena Kobylanski ◽  
Marie-Claire Quenez ◽  
Elisabeth Rouy-Mironescu

1986 ◽  
Vol 23 (04) ◽  
pp. 1019-1024
Author(s):  
Walter Van Assche

The limit of a product of independent 2 × 2 stochastic matrices is given when the entries of the first column are independent and have the same symmetric beta distribution. The rate of convergence is considered by introducing a stopping time for which asymptotics are given.


2020 ◽  
Vol 81 (7) ◽  
pp. 1192-1210
Author(s):  
O.V. Zverev ◽  
V.M. Khametov ◽  
E.A. Shelemekh

Author(s):  
Kelvin Cheung ◽  
Guopeng Li ◽  
Tadahiro Oh

AbstractIn this paper, we present a globalization argument for stochastic nonlinear dispersive PDEs with additive noises by adapting the I-method (= the method of almost conservation laws) to the stochastic setting. As a model example, we consider the defocusing stochastic cubic nonlinear Schrödinger equation (SNLS) on $${\mathbb {R}}^3$$ R 3 with additive stochastic forcing, white in time and correlated in space, such that the noise lies below the energy space. By combining the I-method with Ito’s lemma and a stopping time argument, we construct global-in-time dynamics for SNLS below the energy space.


2008 ◽  
Vol 45 (04) ◽  
pp. 1039-1059 ◽  
Author(s):  
Marius Costeniuc ◽  
Michaela Schnetzer ◽  
Luca Taschini

We study investment and disinvestment decisions in situations where there is a time lagd> 0 from the timetwhen the decision is taken to the timet+dwhen the decision is implemented. In this paper we apply the probabilistic approach to the combined entry and exit decisions under the Parisian implementation delay. In particular, we prove the independence between Parisian stopping times and a general Brownian motion with drift stopped at the stopping time. Relying on this result, we solve the constrained maximization problem, obtaining an analytic solution to the optimal ‘starting’ and ‘stopping’ levels. We compare our results with the instantaneous entry and exit situation, and show that an increase in the uncertainty of the underlying process hastens the decision to invest or disinvest, extending a result of Bar-Ilan and Strange (1996).


1997 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
S. E. Graversen ◽  
G. Peškir

The solution is presented to all optimal stopping problems of the form supτE(G(|Β τ |) – cτ), where is standard Brownian motion and the supremum is taken over all stopping times τ for B with finite expectation, while the map G : ℝ+ → ℝ satisfies for some being given and fixed. The optimal stopping time is shown to be the hitting time by the reflecting Brownian motion of the set of all (approximate) maximum points of the map . The method of proof relies upon Wald's identity for Brownian motion and simple real analysis arguments. A simple proof of the Dubins–Jacka–Schwarz–Shepp–Shiryaev (square root of two) maximal inequality for randomly stopped Brownian motion is given as an application.


Sign in / Sign up

Export Citation Format

Share Document