Transient Stability Enhancement of Power System Including Large-Scale Wind Farm by the Coordinated Control of Adjustable-Speed Pumped-Storage Generator and Battery

Author(s):  
Seiya Goto ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Junji Tamura ◽  
Yoshiharu Matsumura ◽  
...  
2020 ◽  
Vol 10 (24) ◽  
pp. 9034
Author(s):  
Junji Tamura ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Atsushi Sakahara ◽  
Fumihito Tosaka ◽  
...  

The penetration level of large-scale wind farms into power systems has been increasing significantly, and the frequency stability and transient stability of the power systems during and after a network fault can be negatively affected. This paper proposes a new control method to improve the stability of power systems that are composed of large wind farms, as well as usual synchronous generators. The new method is a coordinated controlling method between an adjustable-speed pumping generator (ASG) and a battery. The coordinated system is designed to improve power system stability during a disconnection in a fixed-rotor-speed wind turbine with a squirrel cage-type induction generator (FSWT-SCIG)-based wind farm due to a network fault, in which a battery first responds quickly to the system frequency deviation due to a grid fault and improves the frequency nadir, and then the ASG starts to supply compensatory power to recover the grid frequency to the rated frequency. The performance of the proposed system was confirmed through simulation studies on a power system model consisting of usual synchronous generators (SGs), an ASG, a battery, and an SCIG-based wind farm. Simulation results demonstrated that the proposed control system can enhance the stability of the power system effectively.


2016 ◽  
Vol 6 (6) ◽  
pp. 1280-1287 ◽  
Author(s):  
O. Rahat ◽  
I. Riazy

Enormous penetration of wind power in power systems and its contribution in covering a major part of grid load demand, require higher stability during disturbances. The most important issue of wind generators is the early outage of several generating units when a sudden voltage drop occurs in the grid. Voltage drops near wind generators are mainly due to abrupt load rises and integration of large-scale factories and industrial units into the grid. In this paper, the case study of Binalood wind farm is studied, analyzed, and simulated. Then, various proposed methods are investigated in terms of stability enhancement such that when a disturbance appears near the Binalood wind farm, it can hold up its stability and connection to the grid. Simulations are carried out using Matlab and Simulink.


2013 ◽  
Vol 860-863 ◽  
pp. 309-313
Author(s):  
Xiao Yan Bian ◽  
Li Ning Yang ◽  
Xin Xin Huang ◽  
Yang Fu

Large scale wind farm output variation always deteriorates the system stability. To study this problem, this paper builds the model of power system with the integration of large-scale wind farm based on BPA. The simulation results show that large oscillations of voltage and rotor angle of system will happen, when three-phase short circuit fault occurs on the main line for transmitting wind power. With wind farm output decreasing, the transient stability and small-signal stability of power system will be improved.


Sign in / Sign up

Export Citation Format

Share Document