system frequency
Recently Published Documents


TOTAL DOCUMENTS

828
(FIVE YEARS 264)

H-INDEX

48
(FIVE YEARS 9)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongyong Shan ◽  
Haiyue Wang ◽  
Ke Cao ◽  
Junhua Zhang

AbstractThe wireless power transfer (WPT) system has been widely used in various fields such as household appliances, electric vehicle charging and sensor applications. A frequency reconfigurable magnetic resonant coupling wireless power transfer (MRCWPT) system with dynamically enhanced efficiency by using the frequency reconfigurable metamaterial is proposed in this paper. The reconfigurability is achieved by adjusting the capacitance value of the adjustable capacitor connected in the coil of the system. Finite element simulation results have shown that the frequency reconfigurable electromagnetic metamaterial can manipulate the direction of the electromagnetic field of the system due to its abnormal effective permeability. The ultra-thin frequency reconfigurable metamaterial is designed at different working frequencies of 14.1 MHz, 15 MHz, 16.2 MHz, 17.5 MHz, 19.3 MHz, 21.7 MHz and 25 MHz to enhance the magnetic field and power transfer efficiency (PTE) of the system. Frequency reconfigurable mechanism of the system with the frequency reconfigurable metamaterial is derived by the equivalent circuit theory. Finally, further measurement which verifies the simulation by reasonable agreement is carried out. PTE of the system by adding the metamaterial are 59%, 73%, 67%, 66%, 65%, 60% and 58% at different working frequencies. PTE of the system with and without the metamaterial is 72% and 49% at the distance of 120 mm and the frequency of 15 MHz, respectively.


2022 ◽  
Author(s):  
Huisheng Gao ◽  
Huanhai Xin ◽  
Linbin Huang ◽  
Zhiyi Li ◽  
Wei Huang ◽  
...  

<p>As synchronous generators (SGs) are extensively replaced by inverter-based generators (IBGs), modern power systems are facing complicated frequency stability problems. Conventionally, the frequency nadir and the rate of change of frequency (RoCoF) are the two main factors concerned by power system operators. However, these two factors heavily rely on simulations or experiments, especially in a power system with high-penetration IBGs, which offer limited theoretical insight into how the frequency response characteristics are affected by the devices. This paper aims at filling this gap. Firstly, we derive a formulation of the global frequency for an IBG-penetrated power system, referred to as common-mode frequency (CMF). The derived CMF is demonstrated to be more accurate than existing frequency definitions, e.g., the average system frequency (ASF). Then, a unified transfer function structure (UTFS) is proposed to approximate the frequency responses of different types of devices by focusing on three key parameters<a>, which dramatically reduces the complexity of frequency analysis. </a>On this basis, we introduce two evaluation indices, i.e., frequency drop depth coefficient (FDDC) and frequency drop slope coefficient (FDSC), to theoretically quantify the frequency nadir and the average RoCoF, respectively. Instead of relying on simulations or experiments, our method rigorously links the system’s frequency characteristics to the characteristics of heterogeneous devices, which enables an in-depth understanding regarding how devices affect the system frequency. Finally, the proposed indices are verified through simulations on a modified IEEE 39-bus test system. </p>


2022 ◽  
Author(s):  
Huisheng Gao ◽  
Huanhai Xin ◽  
Linbin Huang ◽  
Zhiyi Li ◽  
Wei Huang ◽  
...  

<p>As synchronous generators (SGs) are extensively replaced by inverter-based generators (IBGs), modern power systems are facing complicated frequency stability problems. Conventionally, the frequency nadir and the rate of change of frequency (RoCoF) are the two main factors concerned by power system operators. However, these two factors heavily rely on simulations or experiments, especially in a power system with high-penetration IBGs, which offer limited theoretical insight into how the frequency response characteristics are affected by the devices. This paper aims at filling this gap. Firstly, we derive a formulation of the global frequency for an IBG-penetrated power system, referred to as common-mode frequency (CMF). The derived CMF is demonstrated to be more accurate than existing frequency definitions, e.g., the average system frequency (ASF). Then, a unified transfer function structure (UTFS) is proposed to approximate the frequency responses of different types of devices by focusing on three key parameters<a>, which dramatically reduces the complexity of frequency analysis. </a>On this basis, we introduce two evaluation indices, i.e., frequency drop depth coefficient (FDDC) and frequency drop slope coefficient (FDSC), to theoretically quantify the frequency nadir and the average RoCoF, respectively. Instead of relying on simulations or experiments, our method rigorously links the system’s frequency characteristics to the characteristics of heterogeneous devices, which enables an in-depth understanding regarding how devices affect the system frequency. Finally, the proposed indices are verified through simulations on a modified IEEE 39-bus test system. </p>


2022 ◽  
Vol 9 ◽  
Author(s):  
Xiuli Si ◽  
Xiaoxin Wu ◽  
Feng You ◽  
Hongliang Yuan ◽  
Yien Xu ◽  
...  

For an electric power grid that has large penetration levels of variable renewable energy including wind generation and photovoltaics, the system frequency stability is jeopardized, which is manifest in lowering frequency nadir and settling frequency. This paper suggests an enhanced primary frequency response strategy of a doubly-fed induction generator (DFIG) in association with pitch angle control. The DFIG works in de-loaded operation with a certain reserve power via pitch angle control prior to disturbances for frequency regulation. To address this, a function of the pitch angle is employed that decreases the pitch angle with time to slowly feed the active power to the power gird. The simulation results demonstrate the effectiveness and feasibility of the proposed primary frequency response strategy including the settling frequency and frequency nadir.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8132
Author(s):  
Jun Wang ◽  
Yien Xu ◽  
Xiaoxin Wu ◽  
Jiejie Huang ◽  
Xinsong Zhang ◽  
...  

An inertial response emulated control strategy of doubly-fed induction generators (DFIGs) is able to arrest their frequency decline following a severe frequency event. Nevertheless, the control coefficient is unchanged, so as to limit the benefit potentiality of improving the inertial response capability for various disturbances and provide less of a benefit for boosting the frequency nadir. This paper addresses an enhanced inertial response emulated control scheme for a DFIG to improve the maximum frequency deviation and maximum rate of change of frequency for various disturbances. To this end, the control coefficient is coupled with the system frequency deviation so as to regulate the control coefficient according to the system frequency deviation (i.e., sizes of the disturbance). Results clearly indicate that the proposed inertial response emulated control strategy provides better performance in terms of improving the maximum rate of change of frequency and maximum frequency deviation under various sizes of disturbance and random wind speed conditions.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7980
Author(s):  
Yien Xu ◽  
Pei Chen ◽  
Xinsong Zhang ◽  
Dejian Yang

Doubly-fed induction generators (DFIGs) participate in the system frequency regulation using a fixed-coefficient droop control scheme. Nevertheless, the frequency-supporting capability of this control scheme with fixed gain is limited for different disturbances. This paper suggests an improved droop control scheme for a DFIG that can both alleviate the frequency nadir and maximum rate of change of frequency (ROCOF) during the frequency regulation. To achieve this, an adaptive droop control coefficient based on the ROCOF is suggested. The proposed droop control coefficient is a linear function of the ROCOF. Therefore, the proposed scheme can adjust the control coefficient according to the varying ROCOF. Simulation results clearly demonstrate that the proposed droop control scheme shows better effectiveness in improving the maximum ROCOF and frequency nadir under various sizes of disturbance, even in a varying wind speed.


Sign in / Sign up

Export Citation Format

Share Document