Reactive Power/Voltage control for unbalanced distribution system using genetic algorithms

Author(s):  
Agus Ulinuha ◽  
Mohammad A. S. Masoum ◽  
Syed M. Islam
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2710 ◽  
Author(s):  
Li Yu ◽  
Di Shi ◽  
Guangyue Xu ◽  
Xiaobin Guo ◽  
Zhen Jiang ◽  
...  

The hierarchical control architecture, including layers of primary, secondary and tertiary controls, is becoming the standard operating paradigm for microgrids (MGs). Two major factors that limit the adoption of existing hierarchical control in microgrid are the low accuracy in reactive power sharing and the requirement for complex communication infrastructure. This paper addresses this problem by proposing a novel distributed primary and secondary control for distributed generators dispersed in a multi-bus microgrid. The proposed method realizes voltage control and accurate reactive power sharing in a distributed manner using minimum communication. Each distributed generator only needs its own information and minimum information from its neighboring units. Topology of the network can be flexible which supports the plug-and-play feature of microgrids. In a distribution system, high R/X ratio and system imbalance can no longer be neglected and thus the sequence component analysis and virtual impedance are implemented in the proposed control framework. The proposed framework is validated by simulation results on a MG testbed modified from the IEEE 13-bus distribution system.


Sign in / Sign up

Export Citation Format

Share Document