Convolutional Neural Network using a threshold predictor for multi-label speech act classification

Author(s):  
Guanghao Xu ◽  
Hyunjung Lee ◽  
Myoung-Wan Koo ◽  
Jungyun Seo
2018 ◽  
Vol 27 (06) ◽  
pp. 1850026
Author(s):  
Kyoungman Bae ◽  
Youngjoong Ko

The application of deep learning techniques in natural language processing tasks has been increased in recent years. Many studies have used the deep learning techniques to obtain a distributed representation of features. In particular, the convolutional neural network (CNN) with the distributed representation have subsequently been shown to be effective for the natural language processing tasks. This paper presents how to apply the CNN to speech-act classification. Then we analyze the experimental results on two issues, how to solve two problems about sparse speech-acts in train data and out of vocabulary, and how to utilize the advantages of CNN in the speech-act classification. As a result, we obtain the significant improved performances when CNN is applied to the speech-act classification.


2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


Sign in / Sign up

Export Citation Format

Share Document