A holistic data modeling approach for multi-database systems

Author(s):  
Goncalo Carvalho ◽  
Jorge Bernardino ◽  
Vasco Pereira ◽  
Bruno Cabral
Author(s):  
Z. M. Ma

Computer-based information systems have become the nerve center of current manufacturing systems. Engineering information modeling in databases is thus essential. However, information imprecision and uncertainty extensively arise in engineering design and manufacturing. So contemporary engineering applications have put a requirement on imprecise and uncertain information modeling. Viewed from database systems, engineering information modeling can be identified at two levels: conceptual data modeling and logical database modeling and correspondingly we have conceptual data models and logical database models, respectively. In this paper, we first investigate information imprecision and uncertainty in engineering applications. Then EXPRESS-G, which is a graphical modeling tool of EXPRESS for conceptual data modeling of engineering information, and nested relational databases are extended based on possibility distribution theory, respectively, in order to model imprecise and uncertain engineering information. The formal methods to mapping fuzzy EXPRESS-G schema to fuzzy relational schema are developed.


Author(s):  
Z.M. Ma

Computer-based information systems have become the nerve center of current manufacturing systems. Engineering information modeling in databases is thus essential. However, information imprecision and uncertainty extensively arise in engineering design and manufacturing. So contemporary engineering applications have put a requirement on imprecise and uncertain information modeling. Viewed from database systems, engineering information modeling can be identified at two levels: conceptual data modeling and logical database modeling and correspondingly we have conceptual data models and logical database models, respectively. In this chapter, we firstly investigate information imprecision and uncertainty in engineering applications. Then EXPRESS-G, which is a graphical modeling tool of EXPRESS for conceptual data modeling of engineering information, and nested relational databases are extended based on possibility distribution theory, respectively, in order to model imprecise and uncertain engineering information. The formal methods to mapping fuzzy EXPRESS-G schema to fuzzy nested relational schema are developed.


Sign in / Sign up

Export Citation Format

Share Document