The Control Strategy of LCL Grid-connected Inverter Based on Hybrid Damping SMC in Weak Grid

Author(s):  
Qiang Li ◽  
Qingfang Teng ◽  
Tingting Li
Energies ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 1067 ◽  
Author(s):  
Emre Ozsoy ◽  
Sanjeevikumar Padmanaban ◽  
Lucian Mihet-Popa ◽  
Viliam Fedák ◽  
Fiaz Ahmad ◽  
...  

2013 ◽  
Vol 732-733 ◽  
pp. 1261-1264
Author(s):  
Zhi Lei Yao ◽  
Lan Xiao ◽  
Jing Xu

An improved control strategy for three-phase grid-connected inverters with space vector pulse width modulation (SVPWM) is proposed. When the grid current contains harmonics, the d-and q-axes grid currents is interacted in the traditional control method, and the waveform quality of the grid current is poor. As the reference output voltage cannot directly reflect the change of the reference grid current with the traditional control strategy, the dynamic response of the grid-connected inverter is slow. In order to solve the aforementioned problems, the d-and q-axes grid currents in the decoupled components of the grid current controller are substituted by the d-and q-axes reference grid currents, respectively. The operating principles of the traditional and proposed control methods are illustrated. Experimental results show that the grid-connected inverter with the improved control strategy has high waveform quality of the grid current and fast dynamic response.


Author(s):  
Mustapha Alaoui ◽  
Hattab Maker ◽  
Azeddine Mouhsen ◽  
Hicham Hihi

In the last decades, researchers and scientists have been trending towards photovoltaic (PV) solar energy research as one of the noteworthy renewable energies. As a matter of fact, the need for a laboratory system devoted to performing measurements and experimentation on PV systems is being increased. The PV array emulator is designed to accomplish this task by reproducing accurately the electrical behavior of real PV sources. The present paper proposes thus a new control and design of PV array emulators. It is based essentially on a hybrid Damping Injection controller. The proposed control strategy circumvents obviously the existing PV emulator's limitations in terms of accuracy, speed and partial shading emulation. Several results are given and discussed to show the efficiency of the proposed system to emulate PV modules and different PV array configurations under uniform solar irradiance and partial shading conditions.


Sign in / Sign up

Export Citation Format

Share Document