Unsupervised Learning Based On Artificial Neural Network: A Review

Author(s):  
Happiness Ugochi Dike ◽  
Yimin Zhou ◽  
Kranthi Kumar Deveerasetty ◽  
Qingtian Wu

2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Saputra ◽  
Sri Suwarno ◽  
Lukas Chrisantyo

Self Organizing Map adalah metode jaringan syaraf tiruan (Artificial Neural Network) yang biasa digunakan untuk melakukan proses klasifikasi dengan sifat unsupervised learning atau pelatihan tak terbimbing. Cluster yang akan digunakan akan ditentukan secara manual hanya saja dalam prosesnya data yang masuk akan dikelompokan secara otomatis tanpa adanya intevensi dari sistem. Penelitian ini menerapkan Self Organizing Map untuk melakukan klasifikasi data berupa rekaman suara dengan format file WAV karena merupakan format audio yang belum terkompresi ke dalam sopran, mezzo sopran, alto, tenor, baritone, dan bass. Dalam pengambilan data untuk input melalui proses preemphasis, frame, blocking, dan windowing sebelum dirubah menjadi sinyal diskrit dengan Fast Fourier Transform. Data berupa rata-rata magnitude menjadi input dalam sistem klasifikasi Self Organizing Map. Dalam penelitian ini hasil yang didapat belum sesuai dengan harapan karena data tidak mengelompok dengan baik.Self Organizing Map adalah metode jaringan syaraf tiruan (Artificial Neural Network) yang biasa digunakan untuk melakukan proses klasifikasi dengan sifat unsupervised learning atau pelatihan tak terbimbing. Cluster yang akan digunakan akan ditentukan secara manual hanya saja dalam prosesnya data yang masuk akan dikelompokan secara otomatis tanpa adanya intevensi dari sistem. Penelitian ini menerapkan Self Organizing Map untuk melakukan klasifikasi data berupa rekaman suara dengan format file WAV karena merupakan format audio yang belum terkompresi ke dalam sopran, mezzo sopran, alto, tenor, baritone, dan bass. Dalam pengambilan data untuk input melalui proses preemphasis, frame, blocking, dan windowing sebelum dirubah menjadi sinyal diskrit dengan Fast Fourier Transform. Data berupa rata-rata magnitude menjadi input dalam sistem klasifikasi Self Organizing Map. Dalam penelitian ini hasil yang didapat belum sesuai dengan harapan karena data tidak mengelompok dengan baik.



2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  


2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  


1998 ◽  
Vol 49 (7) ◽  
pp. 717-722 ◽  
Author(s):  
M C M de Carvalho ◽  
M S Dougherty ◽  
A S Fowkes ◽  
M R Wardman


2019 ◽  
Author(s):  
Johannes Thüring ◽  
Kevin Linka ◽  
Christiane Kuhl ◽  
Sven Nebelung ◽  
Daniel Truhn


2020 ◽  
Vol 39 (6) ◽  
pp. 8463-8475
Author(s):  
Palanivel Srinivasan ◽  
Manivannan Doraipandian

Rare event detections are performed using spatial domain and frequency domain-based procedures. Omnipresent surveillance camera footages are increasing exponentially due course the time. Monitoring all the events manually is an insignificant and more time-consuming process. Therefore, an automated rare event detection contrivance is required to make this process manageable. In this work, a Context-Free Grammar (CFG) is developed for detecting rare events from a video stream and Artificial Neural Network (ANN) is used to train CFG. A set of dedicated algorithms are used to perform frame split process, edge detection, background subtraction and convert the processed data into CFG. The developed CFG is converted into nodes and edges to form a graph. The graph is given to the input layer of an ANN to classify normal and rare event classes. Graph derived from CFG using input video stream is used to train ANN Further the performance of developed Artificial Neural Network Based Context-Free Grammar – Rare Event Detection (ACFG-RED) is compared with other existing techniques and performance metrics such as accuracy, precision, sensitivity, recall, average processing time and average processing power are used for performance estimation and analyzed. Better performance metrics values have been observed for the ANN-CFG model compared with other techniques. The developed model will provide a better solution in detecting rare events using video streams.



Sign in / Sign up

Export Citation Format

Share Document