Adaptive tracking algorithm for a rigid spacecraft with input saturation

Author(s):  
Yinqiu Wang ◽  
Fengmin Yu ◽  
Adrian Bishop ◽  
Changbin Yu
2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Chutiphon Pukdeboon

This paper investigates the attitude stabilization problem of rigid spacecraft subject to actuator constraints, external disturbances, and attitude measurements only. An output feedback control framework with input saturation is proposed to solve this problem. The general saturation function is utilized in the proposed controller design and a unified control method is developed for the asymptotic stabilization of rigid spacecraft without velocity measurements. Asymptotic stability is proven by Lyapunov stability theory. Moreover, a new nonlinear disturbance observer is designed to compensate for external disturbances. Then, a composite controller is presented by combining a unified saturated output feedback control with a nonlinear disturbance observer. Desirable features of the proposed control scheme include the intuitive structure, robustness against external disturbances, avoidance of model information and velocity measurements, and ability to ensure that the actuator constraints are not violated. Finally, numerical simulations have been carried out to verify the effectiveness of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document