scholarly journals Scenario optimization with relaxation: a new tool for design and application to machine learning problems

Author(s):  
Marco C. Campi ◽  
Simone Garatti
Author(s):  
Ivan Herreros

This chapter discusses basic concepts from control theory and machine learning to facilitate a formal understanding of animal learning and motor control. It first distinguishes between feedback and feed-forward control strategies, and later introduces the classification of machine learning applications into supervised, unsupervised, and reinforcement learning problems. Next, it links these concepts with their counterparts in the domain of the psychology of animal learning, highlighting the analogies between supervised learning and classical conditioning, reinforcement learning and operant conditioning, and between unsupervised and perceptual learning. Additionally, it interprets innate and acquired actions from the standpoint of feedback vs anticipatory and adaptive control. Finally, it argues how this framework of translating knowledge between formal and biological disciplines can serve us to not only structure and advance our understanding of brain function but also enrich engineering solutions at the level of robot learning and control with insights coming from biology.


2020 ◽  
Vol 22 (1) ◽  
pp. 18-33
Author(s):  
Raha Moraffah ◽  
Mansooreh Karami ◽  
Ruocheng Guo ◽  
Adrienne Raglin ◽  
Huan Liu

i-com ◽  
2020 ◽  
Vol 19 (3) ◽  
pp. 201-213
Author(s):  
Sven Schultze ◽  
Uwe Gruenefeld ◽  
Susanne Boll

Abstract Deep Learning has revolutionized Machine Learning, enhancing our ability to solve complex computational problems. From image classification to speech recognition, the technology can be beneficial in a broad range of scenarios. However, the barrier to entry is quite high, especially when programming skills are missing. In this paper, we present the development of a learning application that is easy to use, yet powerful enough to solve practical Deep Learning problems. We followed the human-centered design approach and conducted a technical evaluation to identify solvable classification problems. Afterwards, we conducted an online user evaluation to gain insights on users’ experience with the app, and to understand positive as well as negative aspects of our implemented concept. Our results show that participants liked using the app and found it useful, especially for beginners. Nonetheless, future iterations of the learning app should step-wise include more features to support advancing users.


2020 ◽  
Author(s):  
Qing Tao

The extrapolation strategy raised by Nesterov, which can accelerate the convergence rate of gradient descent methods by orders of magnitude when dealing with smooth convex objective, has led to tremendous success in training machine learning tasks. In this paper, we theoretically study its strength in the convergence of individual iterates of general non-smooth convex optimization problems, which we name \textit{individual convergence}. We prove that Nesterov's extrapolation is capable of making the individual convergence of projected gradient methods optimal for general convex problems, which is now a challenging problem in the machine learning community. In light of this consideration, a simple modification of the gradient operation suffices to achieve optimal individual convergence for strongly convex problems, which can be regarded as making an interesting step towards the open question about SGD posed by Shamir \cite{shamir2012open}. Furthermore, the derived algorithms are extended to solve regularized non-smooth learning problems in stochastic settings. {\color{blue}They can serve as an alternative to the most basic SGD especially in coping with machine learning problems, where an individual output is needed to guarantee the regularization structure while keeping an optimal rate of convergence.} Typically, our method is applicable as an efficient tool for solving large-scale $l_1$-regularized hinge-loss learning problems. Several real experiments demonstrate that the derived algorithms not only achieve optimal individual convergence rates but also guarantee better sparsity than the averaged solution.


Author(s):  
Mikhail Krechetov ◽  
Jakub Marecek ◽  
Yury Maximov ◽  
Martin Takac

Low-rank methods for semi-definite programming (SDP) have gained a lot of interest recently, especially in machine learning applications. Their analysis often involves determinant-based or Schatten-norm penalties, which are difficult to implement in practice due to high computational efforts. In this paper, we propose Entropy-Penalized Semi-Definite Programming (EP-SDP), which provides a unified framework for a broad class of penalty functions used in practice to promote a low-rank solution. We show that EP-SDP problems admit an efficient numerical algorithm, having (almost) linear time complexity of the gradient computation; this makes it useful for many machine learning and optimization problems. We illustrate the practical efficiency of our approach on several combinatorial optimization and machine learning problems.


2019 ◽  
pp. 28-34
Author(s):  
Yevgeniya A. Savchenko ◽  
◽  
Natalia A. Rybachok ◽  

Sign in / Sign up

Export Citation Format

Share Document