An Unsupervised Neural Network Approach for Inverse Kinematics Solution of Manipulator following Kalman Filter based Trajectory

Author(s):  
Gaurav Bhardwaj ◽  
N. Sukavanam ◽  
Ruchi Panwar ◽  
R. Balasubramanian
Author(s):  
M. Sailaja ◽  
R. D. V. Prasad

Nowadays the robot technology is advancing rapidly and the use of robots in industries has been increasing. In designing a robot manipulator, kinematicsplays a vital role. The kinematic problem of manipulator control is divided into two types, direct kinematics and inverse kinematics. Robot inverse kinematics, which is important in robot path planning, is a fundamental problem in robotic control. Past solutions for this problem have been through the use of various algebraic or algorithmic procedures, which may be less accurate and time consuming. Artificial neural networks have the ability to approximate highly non-linear functions applied in robot control. The neural network approach deserves examination because of the fundamental properties of computation speed, and they can generalize untrained solutions. In the present work an attempt has been made to evaluate the problemof robot inverse kinematics of Stanford manipulator using artificial neural network approach. Finally two programs are written using C language to solve inverse kinematic problem of Stanford manipulator using Back propagation method of artificial neural network. In this network, the input layer has six nodes, the hidden layer has three nodes, and the output layer has two nodes. And also Elbow manipulator was modelled and its direct kinematics was analysed.


Sign in / Sign up

Export Citation Format

Share Document