A Network Performance Based Data Placement Policy in Distributed Data-Intensive Applications

Author(s):  
Dawei Xu ◽  
Xianglin Miao ◽  
Peng Hu ◽  
Zhongzhi Luan
Author(s):  
Christopher Miceli ◽  
Michael Miceli ◽  
Bety Rodriguez-Milla ◽  
Shantenu Jha

Grids, clouds and cloud-like infrastructures are capable of supporting a broad range of data-intensive applications. There are interesting and unique performance issues that appear as the volume of data and degree of distribution increases. New scalable data-placement and management techniques, as well as novel approaches to determine the relative placement of data and computational workload, are required. We develop and study a genome sequence matching application that is simple to control and deploy, yet serves as a prototype of a data-intensive application. The application uses a SAGA-based implementation of the All-Pairs pattern. This paper aims to understand some of the factors that influence the performance of this application and the interplay of those factors. We also demonstrate how the SAGA approach can enable data-intensive applications to be extensible and interoperable over a range of infrastructure. This capability enables us to compare and contrast two different approaches for executing distributed data-intensive applications—simple application-level data-placement heuristics versus distributed file systems.


2018 ◽  
Vol 19 (3) ◽  
pp. 245-258
Author(s):  
Vengadeswaran Shanmugasundaram ◽  
Balasundaram Sadhu Ramakrishnan

In this data era, massive volumes of data are being generated every second in variety of domains such as Geoscience, Social Web, Finance, e-Commerce, Health Care, Climate modelling, Physics, Astronomy, Government sectors etc. Hadoop has been well-recognized as de factobig data processing platform that have been extensively adopted, and is currently widely used, in many application domains processing Big Data. Even though it is considered as an efficient solution for such complex query processing, it has its own limitation when the data to be processed exhibit interest locality. The data required for any query execution follows grouping behavior wherein only a part of the Big-Data is accessed frequently. During such scenarion, the time taken to execute a queryand return results, increases exponentially as the amount of data increases leading to much waiting time for the user. Since Hadoop default data placement strategy (HDDPS) does not consider such grouping behavior, it does not perform efficiently resulting in lacunas such as decreased local map task execution, increased query execution time etc. Hence proposed an Optimal Data Placement Strategy (ODPS) based on grouping semantics. In this paper we experiment the significance oftwo most promising clustering techniques viz. Hierarchical Agglomerative Clustering (HAC) and Markov Clustering (MCL) in grouping aware data placement for data intensive applications having interest locality. Initially user access pattern is identified by dynamically analyzing history log.Then both clustering techniques (HAC & MCL) are separately applied over the access pattern to obtain independent clusters. These clusters are interpreted and validated to extract the Optimal Data Groupings (ODG). Finally proposed strategy reorganizes the default data layouts in HDFSbased on ODG to achieve maximum parallel execution per group subjective to Load Balancer and Rack Awareness. Our proposed strategy is tested in 10 node cluster placed in a multi rack with Hadoop installed in every node deployed in cloud platform. Proposed strategy reduces the query execution time, significantly improves the data locality and has proved to be more efficient for massive datasets processing in heterogeneous distributed environment. Also MCL shows a marginal improved performance over HAC for queries exhibiting interest localities.


Sign in / Sign up

Export Citation Format

Share Document