A hybrid method for dimensionality reduction in microarray data based on advanced binary ant colony algorithm

Author(s):  
Amirreza Rouhi ◽  
Hossein Nezamabadi-pour

Author(s):  
Fooad Jalili ◽  
Milad Jafari Barani

<p><span>In recent years various methods has been proposed for speech recognition and removing noise from the speech signal became an important issue. In this paper a fuzzy system has been proposed for speech recognition that can obtain accurate results using classification of speech signals with “Ant Colony” algorithm.  First, speech samples are given to the fuzzy system to obtain a pattern for every set of signals that can be helpful for dimensionality reduction, easier checking of outcome and better recognition of signals.  Then, the “ACO” algorithm is used to cluster these signals and determine a cluster for each input signal. Also, with this method we will be able to recognize noise and consider it in a separate cluster and remove it from the input signal. Results show that the accuracy for speech detection and noise removal is desirable.</span></p>



Author(s):  
Fooad Jalili ◽  
Milad Jafari Barani

<p><span>In recent years various methods has been proposed for speech recognition and removing noise from the speech signal became an important issue. In this paper a fuzzy system has been proposed for speech recognition that can obtain accurate results using classification of speech signals with “Ant Colony” algorithm.  First, speech samples are given to the fuzzy system to obtain a pattern for every set of signals that can be helpful for dimensionality reduction, easier checking of outcome and better recognition of signals.  Then, the “ACO” algorithm is used to cluster these signals and determine a cluster for each input signal. Also, with this method we will be able to recognize noise and consider it in a separate cluster and remove it from the input signal. Results show that the accuracy for speech detection and noise removal is desirable.</span></p>







2009 ◽  
Vol 29 (1) ◽  
pp. 136-138 ◽  
Author(s):  
Wen-jing ZENG ◽  
Tie-dong ZHANG ◽  
Yu-ru XU ◽  
Da-peng JIANG


Sign in / Sign up

Export Citation Format

Share Document