hyperspectral remote sensing
Recently Published Documents


TOTAL DOCUMENTS

1269
(FIVE YEARS 292)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol 41 (1) ◽  
pp. 66-67
Author(s):  
William Green

Exploiting Seismic Waveforms: Correlation, Heterogeneity and Inversion, by Brian L. N. Kennett and Andreas Fichtner, ISBN 978-1-108-82878-9, 2021, Cambridge University Press, 502 p. Hyperspectral Remote Sensing: Theory and Applications, by Prem Chandra Pandey et al., ISBN 978-0-081-02894-0, 2020, Elsevier, 506 p.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Abdelrahman Medhat Saleh ◽  
Mohammed Abd-Elwahed ◽  
yasser metwally ◽  
Sayed Arafat

2021 ◽  
Vol 14 (1) ◽  
pp. 109
Author(s):  
Yuehan Qin ◽  
Xinle Zhang ◽  
Zhifang Zhao ◽  
Ziyang Li ◽  
Changbi Yang ◽  
...  

The gold (Au) geochemical anomaly is an important indicator of gold mineralization. While the traditional field geochemical exploration method is time-consuming and expensive, the hyperspectral remote sensing technique serves as a robust technique for the delineation and mapping of hydrothermally altered and weathered mineral deposits. Nonetheless, mineralization element anomaly detection was still seldomly used in previous hyperspectral remote sensing applications in mineralization. This study explored the coupling relationship between Gaofen-5 (GF-5) hyperspectral data and Au geochemical anomalies through several models. The Au geochemical anomalies in the Chahuazhai mining area, Qiubei County, Yunnan Province, SW China, was studied in detail. First, several noise reduction methods including radiometric calibration, Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), Savitzky–Golay filter, and endmember choosing methods including Minimum Noise Fraction (MNF) transformation, matched filtering, and Fast Fourier Transform (FFT) transformation were applied to the Gaofen-5 (GF-5) hyperspectral data processing. The Spectrum-Area (S-A) method was introduced to build an FFT filter to highlight the spectral abnormal characteristics associated with Au geochemical anomaly information. Specifically, the Matched Filtering (MF) technique was applied to the dataset to find the Au geochemical anomaly abundances of endmembers with innovative large-sample learning. Then, Multiple Linear Regression (MLR), Partial Least Squares (PLS) regression, a Back Propagation (BP) network, and Geographically Weighted Regression (GWR) were used to reveal the coupling relationship between the spectra of the processed hyperspectral data and the Au geochemical anomalies. The results show that the GWR analysis has a much higher coefficient of determination, which implies that the Au geochemical anomalies and the spectral information are highly related to spatial locations. GWR works especially well for showing the regional Au geochemical anomaly trend and simulating the Au concentrated areas. The GWR model with application of the S-A method is applicable to the detection of Au geochemical anomalies, which could provide a potential method for Au deposit exploration using GF-5 hyperspectral data.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 22
Author(s):  
Qi Cao ◽  
Gongliang Yu ◽  
Shengjie Sun ◽  
Yong Dou ◽  
Hua Li ◽  
...  

The Haihe River is a typical sluice-controlled river in the north of China. The construction and operation of sluice dams change the flow and other hydrological factors of rivers, which have adverse effects on water, making it difficult to study the characteristics of water quality change and water environment control in northern rivers. In recent years, remote sensing has been widely used in water quality monitoring. However, due to the low signal-to-noise ratio (SNR) and the limitation of instrument resolution, satellite remote sensing is still a challenge to inland water quality monitoring. Ground-based hyperspectral remote sensing has a high temporal-spatial resolution and can be simply fixed in the water edge to achieve real-time continuous detection. A combination of hyperspectral remote sensing devices and BP neural networks is used in the current research to invert water quality parameters. The measured values and remote sensing reflectance of eight water quality parameters (chlorophyll-a (Chl-a), phycocyanin (PC), total suspended sediments (TSS), total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH4-N), nitrate-nitrogen (NO3-N), and pH) were modeled and verified. The results show that the performance R2 of the training model is above 80%, and the performance R2 of the verification model is above 70%. In the training model, the highest fitting degree is TN (R2 = 1, RMSE = 0.0012 mg/L), and the lowest fitting degree is PC (R2 = 0.87, RMSE = 0.0011 mg/L). Therefore, the application of hyperspectral remote sensing technology to water quality detection in the Haihe River is a feasible method. The model built in the hyperspectral remote sensing equipment can help decision-makers to easily understand the real-time changes of water quality parameters.


Sign in / Sign up

Export Citation Format

Share Document