Bearing fault diagnosis based on ensemble empirical mode decomposition and teager energy operator

Author(s):  
Cristian Lo pez ◽  
Wei Zhong ◽  
Feiyun Cong ◽  
Victor Hidalgo
2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Xingxing Jiang ◽  
Shunming Li ◽  
Chun Cheng

Vibration signals of the defect rolling element bearings are usually immersed in strong background noise, which make it difficult to detect the incipient bearing defect. In our paper, the adaptive detection of the multiresonance bands in vibration signal is firstly considered based on variational mode decomposition (VMD). As a consequence, the novel method for enhancing rolling element bearing fault diagnosis is proposed. Specifically, the method is conducted by the following three steps. First, the VMD is introduced to decompose the raw vibration signal. Second, the one or more modes with the information of fault-related impulses are selected through the kurtosis index. Third, Multiresolution Teager Energy Operator (MTEO) is employed to extract the fault-related impulses hidden in the vibration signal and avoid the negative value phenomenon of Teager Energy Operator (TEO). Meanwhile, the physical meaning of MTEO is also discovered in this paper. In addition, an idea of combining the multiresonance bands is constructed to further enhance the fault-related impulses. The simulation studies and experimental verifications confirm that the proposed method is effective for identifying the multiresonance bands and enhancing rolling element bearing fault diagnosis by comparing with Hilbert transform, EMD-based demodulation, and fast Kurtogram analysis.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Zhipeng Feng ◽  
Ming J. Zuo ◽  
Rujiang Hao ◽  
Fulei Chu ◽  
Jay Lee

Periodic impulses in vibration signals and its repeating frequency are the key indicators for diagnosing the local damage of rolling element bearings. A new method based on ensemble empirical mode decomposition (EEMD) and the Teager energy operator is proposed to extract the characteristic frequency of bearing fault. The signal is firstly decomposed into monocomponents by means of EEMD to satisfy the monocomponent requirement by the Teager energy operator. Then, the intrinsic mode function (IMF) of interest is selected according to its correlation with the original signal and its kurtosis. Next, the Teager energy operator is applied to the selected IMF to detect fault-induced impulses. Finally, Fourier transform is applied to the obtained Teager energy series to identify the repeating frequency of fault-induced periodic impulses and thereby to diagnose bearing faults. The principle of the method is illustrated by the analyses of simulated bearing vibration signals. Its effectiveness in extracting the characteristic frequency of bearing faults, and especially its performance in identifying the symptoms of weak and compound faults, are validated by the experimental signal analyses of both seeded fault experiments and a run-to-failure test. Comparison studies show its better performance than, or complements to, the traditional spectral analysis and the squared envelope spectral analysis methods.


Sign in / Sign up

Export Citation Format

Share Document