rolling bearing
Recently Published Documents





2022 ◽  
Vol 169 ◽  
pp. 108733
Zhixin Li ◽  
Jimeng Li ◽  
Wanmeng Ding ◽  
Xing Cheng ◽  
Zong Meng

Xinglong Wang ◽  
Jinde Zheng ◽  
Jun Zhang

Abstract The level selection of frequency band division structure relies on previous information in most gram approaches that capture the optimal demodulation frequency band (ODFB). When an improper level is specified in these approaches, the fault characteristic information contained in the produced ODFB may be insufficient. This research proposes a unique approach termed median line-gram (MELgram) to tackle the level selection problem. To divide the frequency domain signal into a series of demodulation frequency bands, a spectrum median line segmentation model based on Akima interpolation is first created. The level and boundary of the segmentation model can be adaptively identified by this means. Second, the acquired frequency bands are quantized using the negative entropy index, and the ODFB is defined as the frequency band with the largest value. Third, the envelope spectrum is used to determine the ODFB characteristic frequency to pinpoint the bearing fault location. Finally, both simulation and experimental signal analysis are used to demonstrate the efficiency of the suggested method. Furthermore, the suggested method extracts more defect feature information from the ODFB than existing methods.

Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 9
Shuaijun Ma ◽  
Xiaohong Zhang ◽  
Ke Yan ◽  
Yongsheng Zhu ◽  
Jun Hong

Cage stability directly affects the dynamic performance of rolling bearing, which, in turn, affects the operating state of rotating equipment. The random collision between the rolling elements and the cage pocket is the main reason for cage instability. In this paper, from the perspective of the relative sliding velocity between the rolling elements and the bearing raceway, the interactions of the rolling elements and the cage pockets were analyzed, and the four zones with different collision features were defined. On this basis, and on the basis of the bearing dynamics model, the interaction of two adjacent rolling elements and the cage pockets in the a’–b’ area is discussed, and the peak impact force of the adjacent two balls and the cage pockets was investigated in terms of the rotation speed, radial load, acceleration/deceleration, and materials. When the ball runs close to the loaded zone, the probability of multiball random collision increases, which leads to an increase in the cage instability. At the entrance of the loaded zone, the peak impact force has the greatest impact on the cage stability during the acceleration process. Compared to the radial load applied to the bearing, the peak impact force is more sensitive to the bearing speed changes. The multiball collision analysis method provides a new idea for the research of cage stability.

Sign in / Sign up

Export Citation Format

Share Document