scholarly journals A Point Set Generation Network for 3D Object Reconstruction from a Single Image

Author(s):  
Haoqiang Fan ◽  
Hao Su ◽  
Leonidas Guibas
IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 57539-57549 ◽  
Author(s):  
Yang Zhang ◽  
Zhen Liu ◽  
Tianpeng Liu ◽  
Bo Peng ◽  
Xiang Li

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 110-121
Author(s):  
Ahmed J. Afifi ◽  
Jannes Magnusson ◽  
Toufique A. Soomro ◽  
Olaf Hellwich

Author(s):  
Andrey Salvi ◽  
Nathan Gavenski ◽  
Eduardo Pooch ◽  
Felipe Tasoniero ◽  
Rodrigo Barros

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Jiansheng Peng ◽  
Kui Fu ◽  
Qingjin Wei ◽  
Yong Qin ◽  
Qiwen He

As a representative technology of artificial intelligence, 3D reconstruction based on deep learning can be integrated into the edge computing framework to form an intelligent edge and then realize the intelligent processing of the edge. Recently, high-resolution representation of 3D objects using multiview decomposition (MVD) architecture is a fast reconstruction method for generating objects with realistic details from a single RGB image. The results of high-resolution 3D object reconstruction are related to two aspects. On the one hand, a low-resolution reconstruction network represents a good 3D object from a single RGB image. On the other hand, a high-resolution reconstruction network maximizes fine low-resolution 3D objects. To improve these two aspects and further enhance the high-resolution reconstruction capabilities of the 3D object generation network, we study and improve the low-resolution 3D generation network and the depth map superresolution network. Eventually, we get an improved multiview decomposition (IMVD) network. First, we use a 2D image encoder with multifeature fusion (MFF) to enhance the feature extraction capability of the model. Second, a 3D decoder using an effective subpixel convolutional neural network (3D ESPCN) improves the decoding speed in the decoding stage. Moreover, we design a multiresidual dense block (MRDB) to optimize the depth map superresolution network, which allows the model to capture more object details and reduce the model parameters by approximately 25% when the number of network layers is doubled. The experimental results show that the proposed IMVD is better than the original MVD in the 3D object superresolution experiment and the high-resolution 3D reconstruction experiment of a single image.


2021 ◽  
Vol 423 ◽  
pp. 407-418
Author(s):  
Bo Peng ◽  
Wei Wang ◽  
Jing Dong ◽  
Tieniu Tan

Sign in / Sign up

Export Citation Format

Share Document