3d objects
Recently Published Documents


TOTAL DOCUMENTS

1651
(FIVE YEARS 402)

H-INDEX

44
(FIVE YEARS 7)

2022 ◽  
Vol 41 (1) ◽  
pp. 1-16
Author(s):  
Jian Liu ◽  
Shiqing Xin ◽  
Xifeng Gao ◽  
Kaihang Gao ◽  
Kai Xu ◽  
...  

Wrapping objects using ropes is a common practice in our daily life. However, it is difficult to design and tie ropes on a 3D object with complex topology and geometry features while ensuring wrapping security and easy operation. In this article, we propose to compute a rope net that can tightly wrap around various 3D shapes. Our computed rope net not only immobilizes the object but also maintains the load balance during lifting. Based on the key observation that if every knot of the net has four adjacent curve edges, then only a single rope is needed to construct the entire net. We reformulate the rope net computation problem into a constrained curve network optimization. We propose a discrete-continuous optimization approach, where the topological constraints are satisfied in the discrete phase and the geometrical goals are achieved in the continuous stage. We also develop a hoist planning to pick anchor points so that the rope net equally distributes the load during hoisting. Furthermore, we simulate the wrapping process and use it to guide the physical rope net construction process. We demonstrate the effectiveness of our method on 3D objects with varying geometric and topological complexity. In addition, we conduct physical experiments to demonstrate the practicability of our method.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Nico Graw ◽  
Dietmar Stalke

The ability to imagine symmetry and the spatial arrangement of atoms and molecules is crucial in chemistry in general. Teaching and understanding crystallography and the composition of the solid state therefore require understanding of symmetry elements and their relationships. To foster the student's spatial imagination, models representing a range of concepts from individual rotation axes to complete space groups have been designed and built. These models are robust and large enough to be presented and operated in a lecture hall, and they enable students to translate conventional 2D notations into 3D objects and vice versa. Tackling them hands-on means understanding them.


2022 ◽  
Vol 14 (2) ◽  
pp. 289
Author(s):  
Guohua Gou ◽  
Haigang Sui ◽  
Dajun Li ◽  
Zhe Peng ◽  
Bingxuan Guo ◽  
...  

Manifold mesh, a triangular network for representing 3D objects, is widely used to reconstruct accurate 3D models of objects structure. The complexity of these objects and self-occlusion, however, can cause cameras to miss some areas, creating holes in the model. The existing hole-filling methods do not have the ability to detect holes at the model boundaries, leaving overlaps between the newly generated triangles, and also lack the ability to recover missing sharp features in the hole-region. To solve these problems, LIMOFilling, a new method for filling holes in 3D manifold meshes was proposed, and recovering the sharp features. The proposed method, detects the boundary holes robustly by constructing local overlap judgments, and provides the possibility for sharp features recovery using local structure information, as well as reduces the cost of maintaining manifold meshes thus enhancing their utility. The novel method against the existing methods have been tested on different types of holes in four scenes. Experimental results demonstrate the visual effect of the proposed method and the quality of the generated meshes, relative to the existing methods. The proposed hole-detection algorithm found almost all of the holes in different scenes and qualitatively, the subsequent repairs are difficult to see with the naked eye.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 49
Author(s):  
Damian Dzienniak

This paper describes a surface-roughness study performed on samples manufactured additively using the Multi Jet Fusion (MJF) technology. The samples were divided into three groups based on the material used in the process: polypropylene (PP), thermoplastic polyurethane (TPU), and polyamide 11 (PA11). Subsequently, they were tested by means of a roughness-measuring system, which made it possible to determine the typical surface roughness parameters (Ra, Rq, Rz). The tests were designed to examine whether the placement and orientation of 3D objects while printing, in connection with the material used, can significantly influence the surface quality of MJF-printed objects. The results show that the TPU samples have a surface roughness much higher than the PP and PA11 ones, which exhibit roughness levels very similar to each other. It can also be concluded that surfaces printed vertically (along the Z-axis) tend to be less smooth—similarly to the surfaces of objects made of TPU located in the central zones of the print chamber during printing. This information may be of value in cases where low surface roughness is preferred (e.g., manufacturing patient-specific orthoses), although this particular study does not focus on one specific application.


Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 13
Author(s):  
Hao Geng ◽  
Zhiyuan Gao ◽  
Guorun Fang ◽  
Yangmin Xie

Dense scanning is an effective solution for refined geometrical modeling applications. The previous studies in dense environment modeling mostly focused on data acquisition techniques without emphasizing autonomous target recognition and accurate 3D localization. Therefore, they lacked the capability to output semantic information in the scenes. This article aims to make complementation in this aspect. The critical problems we solved are mainly in two aspects: (1) system calibration to ensure detail-fidelity for the 3D objects with fine structures, (2) fast outlier exclusion to improve 3D boxing accuracy. A lightweight fuzzy neural network is proposed to remove most background outliers, which was proven in experiments to be effective for various objects in different situations. With precise and clean data ensured by the two abovementioned techniques, our system can extract target objects from the original point clouds, and more importantly, accurately estimate their center locations and orientations.


2022 ◽  
Vol 70 (1) ◽  
pp. 433-450
Author(s):  
Akanksha Tiwari ◽  
Ram Bilas Pachori ◽  
Premjit Khanganba Sanjram
Keyword(s):  

2022 ◽  
Vol 58 (2) ◽  
pp. 19-31
Author(s):  
Klára Rybenská ◽  
Barbora Borůvková
Keyword(s):  

The aim of the article is to present the possibilities of the digitization of 3D objects using both professional and publicly accessible methods. The article also aims to focus on selected tools of 3D digitization and their possible use in the memory institutions, such as museum, libraries and archives.


Author(s):  
Xiaoxue Chen ◽  
Hao Zhao ◽  
Guyue Zhou ◽  
Ya-Qin Zhang
Keyword(s):  

Author(s):  
Smit Shah

Abstract: 3D city models enable us to gain a better grasp of how various city components interact with one another. Advances in geosciences now allow for the automatic creation of high-quality, realistic 3D city models. It is not limited to visualization and navigation, however, also for shadow and solar potential analysis. Solar radiation is an example of a 3D GIS tool that is in high demand. The calculation of solar radiation that reaches 3D objects can be simple, but the shadow effect of nearby buildings is a considerably more challenging issue because some facades or roofs are only partially shadowed. The present study is analyzed into two approaches. The first approach is considered as Visualization (client-side) approach to visualize the 3D city models on the website using NodeJS and CesiumJS. The second approach is considered as Analyzation (Server-side) approach to analyze the solar potential using python for faster processing and deeming the future development aspects.


2021 ◽  
Vol 5 (4) ◽  
pp. 558
Author(s):  
Fajar Septian ◽  
Bobi Agustian

Augmented Reality (AR) technology provides opportunities for science and engineering. AR also has great opportunities in the world of education, which is to provide and display additional information in the form of 3D objects, video, sound, and text on an object. Smartphone software developers have developed Augmented reality technology that was previously developed on PC devices where this technology utilizes the existing camera on a smartphone. With this situation, AR technology has the opportunity to be used in the development of a media for recognizing hijaiyah letters, so that children will be happier learning because of its attractive appearance and teachers or parents can more easily teach lessons to their children. The way to use it is as follows: first, the user puts a registered and printed marker, second, the smartphone camera identifies (tracking) the marker. If the marker is invalid, the user repeats the identification process. If the marker is valid and identified, the marker will display the hijaiyah letter object in three-dimensional form. Third, users can understand the shape and pronunciation of hijaiyah letters by touching the virtual button on the marker


Sign in / Sign up

Export Citation Format

Share Document