Single-Pass Dependent Bit Allocation in Temporal Scalability Video Coding

Author(s):  
Jiaying Liu ◽  
Yongjin Cho ◽  
Zongming Guo
2014 ◽  
Vol 08 (02) ◽  
pp. 229-243
Author(s):  
Sachin Deshpande

The newly approved High Efficiency Video Coding Standard (HEVC) includes temporal sub-layering feature, which provides temporal scalability. Two types of pictures — Temporal Sub-layer Access Pictures and Step-wise Temporal Sub-layer Access Pictures are provided for this purpose. This paper utilizes the temporal scalability in HEVC to provide bandwidth adaptive HTTP streaming. We describe our HTTP streaming algorithm, which is media timeline aware and which dynamically switches temporal sub-layers on the server side. We performed subjective tests to determine user perception regarding acceptable frame rates when using temporal scalability of HEVC. These results are used to control the algorithm's temporal switching behavior to provide a good quality of experience to the user. We applied Internet and 3GPP error-delay patterns to validate the performance of our algorithm.


Author(s):  
Marwa Meddeb ◽  
Marco Cagnazzo ◽  
Béatrice Pesquet-Popescu

This paper presents a novel rate control scheme designed for the newest high efficiency video coding (HEVC) standard, and aimed at enhancing the quality of regions of interest (ROI) for a videoconferencing system. It is designed to consider the different regions at both frame level and coding tree unit (CTU) level. The proposed approach allocates a higher bit rate to the region of interest while keeping the global bit rate close to the assigned target value. The ROIs, typically faces in this application, are automatically detected and each CTU is classified in a region of interest map. This binary map is given as input to the rate control algorithm and the bit allocation is made accordingly. The algorithm is tested, first, using the initial version of the controller introduced in HEVC test model (HM.10), then, extended in HM.13. In this work, we first investigate the impact of differentiated bit allocation between the two regions using a fixed bit rate ratio in intra-coded frames (I-frames) and Bidirectionally predicted frames (B-frames). Then, unit quantization parameters (QPs) are computed independently for CTUs of different regions. The proposed approach has been compared to the reference controller implemented in HM and to a ROI-based rate control algorithm initially proposed for H.264 that we adopted to HEVC and implemented in HM.9. Experimental results show that our scheme has comparable performances with the ROI-based controller proposed for H.264. It achieves accurate target bit rates and provides an improvement in region of interest quality, both in objective metrics (up to 2 dB in PSNR) and based on subjective quality evaluation.


Sign in / Sign up

Export Citation Format

Share Document