scholarly journals Region-of-interest-based rate control scheme for high-efficiency video coding

Author(s):  
Marwa Meddeb ◽  
Marco Cagnazzo ◽  
Béatrice Pesquet-Popescu

This paper presents a novel rate control scheme designed for the newest high efficiency video coding (HEVC) standard, and aimed at enhancing the quality of regions of interest (ROI) for a videoconferencing system. It is designed to consider the different regions at both frame level and coding tree unit (CTU) level. The proposed approach allocates a higher bit rate to the region of interest while keeping the global bit rate close to the assigned target value. The ROIs, typically faces in this application, are automatically detected and each CTU is classified in a region of interest map. This binary map is given as input to the rate control algorithm and the bit allocation is made accordingly. The algorithm is tested, first, using the initial version of the controller introduced in HEVC test model (HM.10), then, extended in HM.13. In this work, we first investigate the impact of differentiated bit allocation between the two regions using a fixed bit rate ratio in intra-coded frames (I-frames) and Bidirectionally predicted frames (B-frames). Then, unit quantization parameters (QPs) are computed independently for CTUs of different regions. The proposed approach has been compared to the reference controller implemented in HM and to a ROI-based rate control algorithm initially proposed for H.264 that we adopted to HEVC and implemented in HM.9. Experimental results show that our scheme has comparable performances with the ROI-based controller proposed for H.264. It achieves accurate target bit rates and provides an improvement in region of interest quality, both in objective metrics (up to 2 dB in PSNR) and based on subjective quality evaluation.

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 166 ◽  
Author(s):  
Tao Yan ◽  
In-Ho Ra ◽  
Qian Zhang ◽  
Hang Xu ◽  
Linyun Huang

Most existing rate control algorithms are based on the rate-quantization (R-Q) model. However, with video coding schemes becoming more flexible, it is very difficult to accurately model the R-Q relationship. Therefore, in this study we propose a novel ρ domain rate control algorithm for multiview high efficiency video coding (MV-HEVC). Firstly, in order to further improve the efficiency of MV-HEVC, this paper uses our previous research algorithm to optimize the MV-HEVC prediction structure. Then, we established the ρ domain rate control model based on multi-objective optimization. Finally, it used image similarity to analyze the correlation between viewpoints, using encoded information and frame complexity to proceed in bit allocation and bit rate control of the inter-view, frame lay, and base unit. The experimental simulation results show that the algorithm can simultaneously maintain high coding efficiency, where the average error of the actual bit rate and the target bit rate is only 0.9%.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Renjie Song ◽  
Yuandong Zhang

Aiming at the problems that the strategy of target bit allocation at the CTU layer has deviations from the human subjective observation mechanism, and the update phase of parametric model has a higher complexity in the JCTVC-K0103 rate control algorithm of ITU-T H.265/high efficiency video coding (HEVC) standard. Optimized rate control (ORC) algorithm of ITU-T H.265/HEVC based on region of interest (ROI) is proposed. Firstly, the algorithm extracts the region of interest of video frames based on time and space domains by using the improved Itti model. Then, the weight of target bits w is recalculated based on space-time domains to improve the rate control accuracy, and the target bits are distributed based on ROI by the adaptive weight algorithm once again to make the output videos more attuned with the human visual attention mechanism. Finally, the quasi-Newton algorithm is used to update the rate distortion model, which reduces the computational complexity in the update phase of the parametric model. The experimental results show that the ORC algorithm can obtain a better subjective quality in the compressed results with less bit error compared with the other two algorithms. Meanwhile, the rate distortion performance of the ORC algorithm is better on the premise of guaranteeing rate control performance.


Sign in / Sign up

Export Citation Format

Share Document