Subject Features and Hash Codes for Multi-label Image Retrieval

Author(s):  
Changzhen Xiong ◽  
Yanmei Shan
Keyword(s):  
2019 ◽  
Vol 117 ◽  
pp. 74-82 ◽  
Author(s):  
Kun Su ◽  
Gongping Yang ◽  
Lu Yang ◽  
Dunfeng Li ◽  
Peng Su ◽  
...  

2021 ◽  
Author(s):  
Mingrui Chen ◽  
Weiyu Li ◽  
weizhi lu

Recently, it has been observed that $\{0,\pm1\}$-ternary codes which are simply generated from deep features by hard thresholding, tend to outperform $\{-1, 1\}$-binary codes in image retrieval. To obtain better ternary codes, we for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non-smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes.


2021 ◽  
Author(s):  
Mingrui Chen ◽  
Weiyu Li ◽  
weizhi lu

Recently, it has been observed that $\{0,\pm1\}$-ternary codes which are simply generated from deep features by hard thresholding, tend to outperform $\{-1, 1\}$-binary codes in image retrieval. To obtain better ternary codes, we for the first time propose to jointly learn the features with the codes by appending a smoothed function to the networks. During training, the function could evolve into a non-smoothed ternary function by a continuation method, and then generate ternary codes. The method circumvents the difficulty of directly training discrete functions and reduces the quantization errors of ternary codes. Experiments show that the proposed joint learning indeed could produce better ternary codes.


Author(s):  
Jie Lin ◽  
Zechao Li ◽  
Jinhui Tang

With the explosive growth of images containing faces, scalable face image retrieval has attracted increasing attention. Due to the amazing effectiveness, deep hashing has become a popular hashing method recently. In this work, we propose a new Discriminative Deep Hashing (DDH) network to learn discriminative and compact hash codes for large-scale face image retrieval. The proposed network incorporates the end-to-end learning, the divide-and-encode module and the desired discrete code learning into a unified framework. Specifically, a network with a stack of convolution-pooling layers is proposed to extract multi-scale and robust features by merging the outputs of the third max pooling layer and the fourth convolutional layer. To reduce the redundancy among hash codes and the network parameters simultaneously, a divide-and-encode module to generate compact hash codes. Moreover, a loss function is introduced to minimize the prediction errors of the learned hash codes, which can lead to discriminative hash codes. Extensive experiments on two datasets demonstrate that the proposed method achieves superior performance compared with some state-of-the-art hashing methods.


Author(s):  
邓 广伟 ◽  
Cheng Xu ◽  
XiaoHan Tu ◽  
Tao Li ◽  
Nan Gao

Author(s):  
Changying Du ◽  
Xingyu Xie ◽  
Changde Du ◽  
Hao Wang

By optimizing probability distributions over discrete latent codes, Stochastic Generative Hashing (SGH) bypasses the critical and intractable binary constraints on hash codes. While encouraging results were reported, SGH still suffers from the deficient usage of latent codes, i.e., there often exist many uninformative latent dimensions in the code space, a disadvantage inherited from its auto-encoding variational framework. Motivated by the fact that code redundancy usually is severer when more complex decoder network is used, in this paper, we propose a constrained deep generative architecture to simplify the decoder for data reconstruction. Specifically, our new framework forces the latent hashing codes to not only reconstruct data through the generative network but also retain minimal squared L2 difference to the last real-valued network hidden layer. Furthermore, during posterior inference, we propose to regularize the standard auto-encoding objective with an additional term that explicitly accounts for the negative redundancy degree of latent code dimensions. We interpret such modifications as Bayesian posterior regularization and design an adversarial strategy to optimize the generative, the variational, and the redundancy-resistanting parameters. Empirical results show that our new method can significantly boost the quality of learned codes and achieve state-of-the-art performance for image retrieval.


Sign in / Sign up

Export Citation Format

Share Document