A novel method for induction motors stator inter-turn short circuit fault diagnosis based on wavelet energy and neural network

Author(s):  
B. Bessam ◽  
A. Menacer ◽  
M. Boumehraz ◽  
H. Cherif
2020 ◽  
Vol 31 ◽  
pp. 101658 ◽  
Author(s):  
Jianwen Meng ◽  
Moussa Boukhnifer ◽  
Claude Delpha ◽  
Demba Diallo

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3054 ◽  
Author(s):  
Yanling Lv ◽  
Yuting Gao ◽  
Jian Zhang ◽  
Chenmin Deng ◽  
Shiqiang Hou

As a new type of generator, an asynchronized high-voltage generator has the characteristics of an asynchronous generator and high voltage generator. The effect of the loss of an excitation fault for an asynchronized high-voltage generator and its fault diagnosis technique are still in the research stage. Firstly, a finite element model of the asynchronized high-voltage generator considering the field-circuit-movement coupling is established. Secondly, the three phase short-circuit loss of excitation fault, three phase open-circuit loss of excitation fault, and three phase short-circuit fault on the stator side are analyzed by the simulation method that is applied abroad at present. The fault phenomenon under the stator three phase short-circuit fault is similar to that under the three phase short-circuit loss of excitation. Then, a symmetrical loss of the excitation fault diagnosis system based on wavelet packet analysis and the Back Propagation neural network (BP neural network) is established. At last, we confirm that this system can eliminate the interference of the stator three phase short-circuit fault, accurately diagnose the symmetrical loss of the excitation fault, and judge the type of symmetrical loss of the excitation fault. It saves time to find the fault cause and improves the stability of system operation.


Sign in / Sign up

Export Citation Format

Share Document