Reactive power optimization in area power grid based on improved Tabu search algorithm

Author(s):  
Wennan Lin ◽  
Yihua Li ◽  
Xingtao Xu ◽  
Maojun li
2014 ◽  
Vol 1006-1007 ◽  
pp. 1021-1025
Author(s):  
Song Tao Zhang ◽  
Gong Bao Wang ◽  
Hui Bo Wang

By using tabu search algorithm which has strong local search ability as mutation operator of genetic algorithm, the tabu-genetic algorithm is designed for reactive power optimization in this paper, the strong global search ability of genetic algorithm and strong local search ability of tabu search algorithm is combined, the disadvantage of weak local search ability of genetic algorithm is conquered. Otherwise, the over limit of population is recorded and filtered, to ensure the final individual is under limit and effective. The tabu-genetic algorithm and simple genetic algorithm are used for simulation of IEEE 14-bus system 500 times, the results indicate that the performance of the tabu-genetic algorithm is much better than the simple genetic algorithm, its local search ability is improved obviously, and the active power loss is reduced more.


2020 ◽  
Vol 1659 ◽  
pp. 012036
Author(s):  
Lei Sun ◽  
Feng Jing ◽  
Fan Sun ◽  
Hongyan Guo ◽  
Dengyu Xiong ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Fang Zeng ◽  
Hongchun Shu

This paper constructs a reliable reactive power optimization (RPO) model of power grid with the controlled participation of high-penetration wind and solar energies and provides a novel fast atom search optimization (FASO) algorithm to reach a set of solutions to the RPO problem. The developed FASO algorithm owns prominent merits of high searching efficiency and premature convergence avoidance compared with the original atom search optimization (ASO) algorithm, which is applied to determine the optimal dispatch scheme including terminal voltage of generators, the capacity of static VAR compensator (SVC), reactive power output of wind and solar energies, and the tap ratio of transformers. There are two objective functions to be minimized for maintaining the safe and reliable operation of power grid, i.e., total power loss of transmission lines and total voltage deviation of nodes. Meanwhile, the regulation capacities of wind farms and photovoltaic (PV) stations are evaluated based on different weather conditions, i.e., wind speed and solar irradiation. Particularly, the reactive power outputs of wind and solar energies can be globally controlled to coordinate with other controllable units instead of a local self-control. Eventually, the extended IEEE 9-bus and IEEE 39-bus systems are introduced to test the performance of the FASO algorithm for RPO problem. It has been verified that FASO can not only meet the optimal regulation requirements of RPO but also obtain high-quality regulation schemes with the fastest convergence speed and highest convergence stability in contrast with else algorithms.


2013 ◽  
Vol 765-767 ◽  
pp. 2503-2508
Author(s):  
Xiang Lei ◽  
Yan Li ◽  
Shao Rong Wang ◽  
Hong Zhao ◽  
Fen Zhou ◽  
...  

Taking account of the mutual impacts of distributed generation and reactive power, to determine the optimal position and capacity of the compensation device to be installed, the paper proposed an improved Tabu search algorithm for reactive power optimization. The voltage quality is considered of the model using minimum network active power loss as objective Function. It is achieved by maintaining the whole system power loss as minimum thereby reducing cost allocation. On the basis of general Tabu search algorithm, the algorithm used memory guidance search strategy to focus on searching for a local optimum value, avoid a global search blindness. To deal with the neighborhood solution set properly and save algorithm storage space , some corresponding improvements are made, thus, it is easily to stop the iteration of partial optimization and it is more probable to achieve the global optimization by use of the improved algorithm. Simulations are carried out on standard IEEE 33 test system and results are presented.


2014 ◽  
Vol 971-973 ◽  
pp. 979-982
Author(s):  
Yan Hong Li ◽  
Zhi Rong Zhang

Automatic voltage control(AVC) is the highest form of current power grid voltage and reactive power control,during the implementation of AVC, the whole network reactive power optimization isthe core and foundation. Thispaper researches and discuses the application of reactive power optimization inpower grid AVC. In the traditional reactive power optimization, the reactivepower limits of synchronous generators are fixed. In this paper, thesynchronous generator PQ operating limits change with external conditions,thus establishes reactive power optimization model in accordance with therequirements of AVC. Thispaper presents reactive power optimization method based on the principle ofpartition. The method decomposes the system to several partitions. Eachpartition separately optimized, thus reduces the system scale.And the convergence of the algorithm, the calculation speed and the discretevariable processing etc. improve. At the same time, this method reflects theclassification, hierarchical, partition, characteristics of coordinated controlof AVC.


2016 ◽  
Vol 12 (02) ◽  
pp. 10
Author(s):  
Liang Sun ◽  
Xusheng Jian ◽  
Wenqiang Yuan

In the paper, the influence of harmonic was taken into consideration during the realization of the AVC system in the power grid of Wuhu region, relevant study and development were conducted from the perspective of application and practice, and concrete proposal of practicable reactive voltage power optimization was put forward. The system adopted two-layer control plan: whole-network coordination layer and execution layer within transformer substation. Optimization algorithm adopted the reactive power optimization method with relaxed constraints so as to improve the convergence and computation speed of reactive power optimization. To control the impact of harmonic, a hybrid active power filter scheme which was made up of passive power filter and active power filter was adopted, thus improving the cost performance of the AVC system. The result of applying the AVC system in the power grid of Wuhu region shows that the system is stable and reliable, obviously decreasing the operation times of equipment and improving the voltage qualified rate and power factor of panel point.


Sign in / Sign up

Export Citation Format

Share Document