Substantiation of the use of viscoelastic material model in numerical analysis the creep of concrete structures

Author(s):  
Vladimir N. Sidorov ◽  
Katarzyna Nowak
1983 ◽  
Vol 50 (4a) ◽  
pp. 740-742 ◽  
Author(s):  
B. Stora˚kers

The classical Fo¨ppl equations, governing the deflection of plane membranes, constitute the first-order consistent approximation in the case of linear elastic material behavior. It is shown that despite the static and kinematic nonlinearities present, for arbitrary load histories a correspondence principle for viscoelastic material behavior exists if all relevant relaxation moduli are of uniform time dependence. Application of the principle is illustrated by means of a popular material model.


2018 ◽  
Vol 14 (1) ◽  
pp. 61-68 ◽  
Author(s):  
Maciej Major ◽  
Izabela Major ◽  
Daniela Kuchárová ◽  
Krzysztof Kuliński

AbstractThe paper presents numerical analysis of block made of three layers: concrete with I-shape rubber pads, space filled with air and concrete with embedded cross rubber pads, respectively. The block is subjected to the dynamic load. To the analysis as rubber the hyperelastic incompressible Zahorski material model was assumed. This material well describes the real material properties in the range of large elastic deformations. Embedded rubber pads provide an additional protection against the transversal dynamic load. ADINA software was utilized to perform numerical analysis of determining the percentage damping factor of rubber-concrete composite in comparison with block made of concrete.


Sign in / Sign up

Export Citation Format

Share Document