linear elastic material
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

Author(s):  
Rahav Gowtham Venkateswaran ◽  
Ursula Kowalsky ◽  
Dieter Dinkler

AbstractRecently, the discrete element method is increasingly being used for describing the behaviour of isotropic linear elastic materials. However, the common bond models employed to describe the interaction between particles restrict the range of Poisson’s ratio that can be represented. In this paper, to overcome the restriction, a modified bond model that includes the coupling of shear strain energy of neighbouring bonds is proposed. The coupling is described by a multi-bond term that enables the model to distinguish between shear deformations and rigid-body rotations. The positive definiteness of the strain energy function of the modified bond model is verified. To validate the model, uniaxial tension, pure shear and pure bending tests are performed. Comparison of the particle displacements with continuum mechanics solution demonstrates the ability of the model to describe the behaviour of isotropic linear elastic material for values of Poisson’s ratio in the range $$0 \le \nu < 0.5$$ 0 ≤ ν < 0.5 .


Author(s):  
Durlabh Bartaula ◽  
Yong Li ◽  
Smitha Koduru ◽  
Samer Adeeb

Abstract Pipelines carrying oil and gas are susceptible to fatigue failure (i.e., unstable fatigue crack propagation) due to fluctuating loading such as varying internal pressure and other external loadings. Fatigue crack growth (FCG) prediction through full-scale pipe tests can be expensive and time consuming, and experimental data is limited particularly in the face of large uncertainty involved. In contrast, numerical simulation techniques (e.g., XFEM) can be alternative to study the FCG, given that numerical models can be theoretically and/or experimentally validated with reasonable accuracy. In this study, capabilities and limitations of existing fatigue analysis code (e.g., direct cyclic approach with XFEM) in Abaqus for low cycle fatigue simulation are explored for compact-tension (CT) specimens and pipelines assuming linear elastic material behavior. The simulated FCG curve for a CT specimen is compared with that obtained from the analytical method using the stress intensity factor prescribed in ASTM E647. However, for real pipelines with elastic-plastic behavior, direct cyclic approach is not suitable, and an indirect cyclic approach is used based on the fracture energy parameters (e.g., J integral) calculated using XFEM in Abaqus. FCG law (e.g., power law relationship like Paris law) is used to generate the fatigue crack growth curve. For comparison, the FCG curve obtained through direct cyclic approach for pipelines assuming linear elastic material is also presented. The comparative studies here indicate that XFEM-based FCG simulation using appropriate techniques can be applied to pipelines for fatigue life prediction.


2018 ◽  
Vol 98 (6) ◽  
Author(s):  
Fabian Barras ◽  
René Carpaij ◽  
Philippe H. Geubelle ◽  
Jean-François Molinari

2018 ◽  
Vol 166 ◽  
pp. 01004
Author(s):  
Ruetai Graipaspong ◽  
Teeranoot Chanthasopeephan

In this paper, compliant Ortho-planar spring was designed based on a three-dimensional topology optimization method. The computation was developed using MATLAB programming. The objective of this work was to apply dual method to design an Ortho-planar spring while the design should have minimum mass and at the same time satisfy a set of constrained displacement. Throughout this paper, we analyzed a method for designing an Ortho-planar spring using linear elastic material and hyperelastic material. The results showed that under small displacement conditions, the output displacement, maximum stress magnitude, and the maximum stress of linear elastic assumption and hyper-elastic material were relatively close to each other. However, the mass fraction and the layout as the result of the optimization process was different. As for larger displacement, the maximum stress of linear elastic material appeared 2.59 times higher than the maximum stress of the hyper-elastic material model. The topology optimization output based on linear material was invalid because the topology of the computed Ortho-planar spring was not appeared as a one-piece layout while the design based on nonlinear material looked promising.


Author(s):  
Maryam Shirmohammadi ◽  
Prasad KDV Yarlagadda

Abstract Finite element (FE) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was developed only with the plastic material model. The outcomes of force versus time curves obtained from FE models followed similar pattern to the experimental curves; however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally, Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modeling were used to develop material model for peel and flesh tissues in FE modeling of mechanical peeling of tough skin vegetables. The results presented in this paper are a part of a study on mechanical properties of agricultural tissues focusing on mechanical peeling methods using mathematical, experimental and computational modeling.


Sign in / Sign up

Export Citation Format

Share Document