Network authority earthing connection policy case study of an industrial facility expansion

Author(s):  
M.J. Bale ◽  
S.J. Palmer

This study examines the use of absorption chiller systems in a designated industrial facility having waste heat by conducting energy, exergy and economic analyses. The absorption chiller systems namely single-effect, double-effect series, double-effect parallel and double-effect reverse parallel were analysed to determine the best alternative for the wood pencil factory. The results indicated that the COP of the single-effect absorption chiller systems is changed from 0.758 to 0.763 when the temperature of the generator was increased from 89 ºC to 125 ºC. However, the exergetic performance of the single-effect absorption chiller system decreased by 40% in the same generator temperature range. On the other hand, COP of all double-effect absorption chiller systems increased about 8 % when the generator temperature was changed from 116 ºC to 155 ºC while the exergetic performance of all double absorption chiller systems decreased by around 14% for the same generator temperature range. The COP and exergetic efficiency values of the double-effect parallel system were found to be higher than other absorption systems at all generator temperature values. Overall, this study recommends that the double-effect parallel absorption chiller systems can be preferred for the factories having waste heat source wood chips. The average payback period of the system was also found to be 1.4 years. Furthermore, this study shows that double-effect parallel absorption chiller systems can be proposed for the facilities having wood chips waste sources instead of double-effect reverse parallel absorption chiller systems since they are easy to operate and have lower maintenance costs.


2021 ◽  
pp. 1469-1477

This study examines the use of absorption chiller systems in a designated industrial facility having waste heat by conducting energy, exergy and economic analyses. The absorption chiller systems namely single-effect, double-effect series, double-effect parallel and double-effect reverse parallel were analysed to determine the best alternative for the wood pencil factory. The results indicated that the COP of the single-effect absorption chiller systems is changed from 0.758 to 0.763 when the temperature of the generator was increased from 89 ºC to 125 ºC. However, the exergetic performance of the single-effect absorption chiller system decreased by 40% in the same generator temperature range. On the other hand, COP of all double-effect absorption chiller systems increased about 8 % when the generator temperature was changed from 116 ºC to 155 ºC while the exergetic performance of all double absorption chiller systems decreased by around 14% for the same generator temperature range. The COP and exergetic efficiency values of the double-effect parallel system were found to be higher than other absorption systems at all generator temperature values. Overall, this study recommends that the double-effect parallel absorption chiller systems can be preferred for the factories having waste heat source wood chips. The average payback period of the system was also found to be 1.4 years. Furthermore, this study shows that double-effect parallel absorption chiller systems can be proposed for the facilities having wood chips waste sources instead of double-effect reverse parallel absorption chiller systems since they are easy to operate and have lower maintenance costs.


This study examines the use of absorption chiller systems in a designated industrial facility having waste heat by conducting energy, exergy and economic analyses. The absorption chiller systems namely single-effect, double-effect series, double-effect parallel and double-effect reverse parallel were analysed to determine the best alternative for the wood pencil factory. The results indicated that the COP of the single-effect absorption chiller systems is changed from 0.758 to 0.763 when the temperature of the generator was increased from 89 ºC to 125 ºC. However, the exergetic performance of the single-effect absorption chiller system decreased by 40% in the same generator temperature range. On the other hand, COP of all double-effect absorption chiller systems increased about 8 % when the generator temperature was changed from 116 ºC to 155 ºC while the exergetic performance of all double absorption chiller systems decreased by around 14% for the same generator temperature range. The COP and exergetic efficiency values of the double-effect parallel system were found to be higher than other absorption systems at all generator temperature values. Overall, this study recommends that the double-effect parallel absorption chiller systems can be preferred for the factories having waste heat source wood chips. The average payback period of the system was also found to be 1.4 years. Furthermore, this study shows that double-effect parallel absorption chiller systems can be proposed for the facilities having wood chips waste sources instead of double-effect reverse parallel absorption chiller systems since they are easy to operate and have lower maintenance costs.


2014 ◽  
Vol 38 (01) ◽  
pp. 102-129
Author(s):  
ALBERTO MARTÍN ÁLVAREZ ◽  
EUDALD CORTINA ORERO

AbstractUsing interviews with former militants and previously unpublished documents, this article traces the genesis and internal dynamics of the Ejército Revolucionario del Pueblo (People's Revolutionary Army, ERP) in El Salvador during the early years of its existence (1970–6). This period was marked by the inability of the ERP to maintain internal coherence or any consensus on revolutionary strategy, which led to a series of splits and internal fights over control of the organisation. The evidence marshalled in this case study sheds new light on the origins of the armed Salvadorean Left and thus contributes to a wider understanding of the processes of formation and internal dynamics of armed left-wing groups that emerged from the 1960s onwards in Latin America.


Sign in / Sign up

Export Citation Format

Share Document