Prosumers in Local Energy Market Based on Non-cooperative Game Theory

Author(s):  
Phittawat Yotha ◽  
Kittisak Intaprom ◽  
Paramet Wirasanti
Author(s):  
Cunbin Li ◽  
Ding Liu ◽  
Yi Wang ◽  
Chunyan Liang

AbstractAdvanced grid technology represented by smart grid and energy internet is the core feature of the next-generation power grid. The next-generation power grid will be a large-scale cyber-physical system (CPS), which will have a higher level of risk management due to its flexibility in sensing and control. This paper explains the methods and results of a study on grid CPS’s behavior after risk. Firstly, a behavior model based on hybrid automata is built to simulate grid CPS’s risk decisions. Then, a GCPS risk transfer model based on cooperative game theory is built. The model allows decisions to ignore complex network structures. On this basis, a modified applicant-proposing algorithm to achieve risk optimum is proposed. The risk management model proposed in this paper can provide references for power generation and transmission decision after risk as well as risk aversion, an empirical study in north China verifies its validity.


2021 ◽  
Vol 145 ◽  
pp. 111056
Author(s):  
Andrey Churkin ◽  
Janusz Bialek ◽  
David Pozo ◽  
Enzo Sauma ◽  
Nikolay Korgin

2021 ◽  
Vol 50 (1) ◽  
pp. 78-85
Author(s):  
Ester Livshits ◽  
Leopoldo Bertossi ◽  
Benny Kimelfeld ◽  
Moshe Sebag

Database tuples can be seen as players in the game of jointly realizing the answer to a query. Some tuples may contribute more than others to the outcome, which can be a binary value in the case of a Boolean query, a number for a numerical aggregate query, and so on. To quantify the contributions of tuples, we use the Shapley value that was introduced in cooperative game theory and has found applications in a plethora of domains. Specifically, the Shapley value of an individual tuple quantifies its contribution to the query. We investigate the applicability of the Shapley value in this setting, as well as the computational aspects of its calculation in terms of complexity, algorithms, and approximation.


2009 ◽  
Vol 18 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Danny Ben-Shahar ◽  
Yongheng Deng ◽  
Eyal Sulganik

Sign in / Sign up

Export Citation Format

Share Document