66 kV Overhead Transmission Lines Performance Evaluation toward Lightning Strike with Modeling and Simulation

Author(s):  
A. S. Habibie ◽  
P. A. A. Pramana ◽  
A. S. Surya
Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2142
Author(s):  
Fabio Massimo Gatta ◽  
Alberto Geri ◽  
Stefano Lauria ◽  
Marco Maccioni ◽  
Francesco Palone

A significant majority of overhead transmission lines’ (OHLs) outages is due to backflashovers caused by direct lightning strikes: the realistic assessment of the lightning performance is thus an important task. The paper presents the analysis of the lightning performance of an existing 150 kV Italian OHL, namely, its backflashover rate (BFOR), carried out by means of an ATP-EMTP-based Monte Carlo procedure. Among other features, the procedure makes use of a simplified pi-circuit for line towers’ grounding system, allowing a very accurate reproduction of transient behaviours at a very low computational cost. Tower grounding design modifications, aimed at improving the OHL lightning performance, are also proposed and discussed.


2020 ◽  
Vol 22 (4-5) ◽  
pp. 389-394
Author(s):  
Aziz Ullah Khan

This paper demonstrated the design of a Metal Oxide Surge Arrester for a 132 kV system with a rated voltage of 120 kV according to specifications. The study model was chosen to be Pinceti model which is a derivation of the IEEE standard model of Lightning arrester design. The design specifications for the lab tests on 120kV rated arrester for ZnO material were obtained from the catalogue of Ohio Brass Pvt. Ltd. The parameters for the lumped components were derived from the manufacturer’s data sheet while the non-linear characteristic was derived from curve fitting based on the Pinceti provided curves in literature, using Matlab Curve Fitting Tool. The design was simulated on EMTP-RV commercial software and the results before optimization as well as after optimization are presented. A cross comparison with the manufacturers data results in 1.113% relative error, which is in competition with similar designs for different rated and system voltages in literature. The study presents an improved model of a metal oxide arrester for 132kV system, with its lumped and exponential parameters presented in detail.


2021 ◽  
Vol 198 ◽  
pp. 107343
Author(s):  
J. Morales ◽  
J. Mahseredjian ◽  
I. Kocar ◽  
H. Xue ◽  
A. Daneshpooy

Sign in / Sign up

Export Citation Format

Share Document