European Journal of Electrical Engineering
Latest Publications


TOTAL DOCUMENTS

413
(FIVE YEARS 176)

H-INDEX

5
(FIVE YEARS 3)

Published By Lavoisier Sas

2103-3641

2021 ◽  
Vol 23 (6) ◽  
pp. 439-444
Author(s):  
Manar Nesser ◽  
Olivier Maloberti ◽  
Elias Salloum ◽  
Julien Dupuy ◽  
Jérôme Fortin

Improving the performance of electrical steels within the magnetic circuits is essential to save energy. The domain refinement through local surface treatment by laser is an effective technique to reduce the iron losses in grain-oriented iron silicon steels. To interpret the mechanism of this technique, we have quantitatively studied the impact of nanosecond pulse laser treatment on the magnetic properties of grain-oriented Fe(3%wt)Si sheets. We measured the total power loss and apparent permeability of the samples using a Single-Sheet Tester (SST). The laser treatment resulted in a loss reduction of up to 24% compared to the average power loss of standard samples at 50 Hz. At mid-induction levels, the reduction was also accompanied by an improvement in apparent permeability. A dynamic magnetic behavior law was used to identify a dynamic property Λ including information on density, surface area and wall mobility and another internal permeability property µ representative of static field and magnetization characteristics. Lastly, we presented the behavior of these properties under different laser treatment.


2021 ◽  
Vol 23 (6) ◽  
pp. 481-486
Author(s):  
K. Darques ◽  
A. Tounzi ◽  
A. Benabou ◽  
S. Shihab ◽  
J. Korecki ◽  
...  

In high power electrical machines, the leakage magnetic flux due to end windings induces eddy currents in clamping devices. However, it is quite difficult to quantify these losses. In order to study the effect of different clamping materials and the impact of the magnetization direction, an experimental mock-up composed of a stator and a clamping plate has been developed. An axial coil generates a circumferential magnetic flux in the stator core at different frequencies. Eddy current losses in the clamping plates are deduced from a power balance by subtracting Joule losses and iron losses from the total measured losses. Iron losses are deduced from 3D FE calculations while the impact of the frequency on B(H) curve is taken into account. Losses in the clamping device are then analyzed depending on experimental parameters.


2021 ◽  
Vol 23 (6) ◽  
pp. 445-454
Author(s):  
Youssouf Mini ◽  
Ngac Ky Ngac Ky ◽  
Eric Semail

This paper proposes a sensorless control strategy based on Sliding Mode Observer (SMO) for a Five-phase Interior Permanent Magnet Synchronous Machine (FIPMSM), with a consideration of the third harmonic component. Compared to conventional three-phase machines, the third harmonic of back electromotive force (back-EMF) contains more information. Thus, in this paper, the first and third harmonic components of the five-phase machine are considered to estimate the rotor position which is necessary for the vector control. Simulation results are shown to verify the feasibility and the robustness of the proposed sensorless control strategy.


2021 ◽  
Vol 23 (6) ◽  
pp. 467-474
Author(s):  
Younes Azzoug ◽  
Remus Pusca ◽  
Mohamed Sahraoui ◽  
Abdelkarim Ammar ◽  
Tarek Ameid ◽  
...  

This paper proposes a fault-tolerant control technique against current sensors failure in direct torque controlled induction motors drives, based on a new modification of Luenberger observer for currents estimation and axes transformation for vector rotation. Several important aspects are covered in the proposed algorithm, such as the detection of sensors failure, the isolation of faulty sensors, and the reconfiguration of the control system by a correct estimation. A logic circuit ensures fault detection by analyzing the residual signal between the measured and estimated quantities, while a single observer performs the task of estimating the line currents. In addition, a decision logic circuit isolates the erroneous signal and simultaneously selects the appropriate estimated current signal. An axes transformation ensures rotation from (a,b) to (α,β), which keeps a low-cost control using only two current sensors. The proposed scheme is tested on MATLAB/Simulink environment and experimentally validated in a laboratory prototype mainly containing a dS1104 card and 4 kW induction motor.


2021 ◽  
Vol 23 (6) ◽  
pp. 433-438
Author(s):  
Mohamed Rahmoune ◽  
Saliha Chettih

Here in the research paper, we did not use smart methods to predict the future but rather to show the impact of the pandemic, we used the hybrid method using the PSO-ANN algorithm to demonstrate the impact of COVID-19 on electricity consumption and to demonstrate that we used two basic steps. The first step is to demonstrate that the hybrid method is effective for prediction. We showed that the prediction for 2019 was good, and that was before the onset of COVID-19. As for the second step, we applied the same hybrid algorithm after the emergence of COVID-19, i.e. for 2020, to note the difference between the prediction and the current pregnancy, which represents the impact of this epidemic, and this prediction in the short term. A short-term role in the operation of a power system in terms of achieving an economical electrical output and avoiding losses or outages. We've collected four consecutive years of data that is downloaded every quarter-hour of the day. Electricity consumption in Algeria is used as an input to the PSO-ANN learning algorithm. The results of the PSO-ANN pregnancy prediction algorithm have better accuracy than the ANN prediction. In the future but with the emergence of a pandemic that has had a clear difference and represents economic losses in the field of electricity, the epidemic should be viewed as a short-term variable to reduce the level of energy loss and generation cost.


2021 ◽  
Vol 23 (6) ◽  
pp. 475-480
Author(s):  
Yacine Ayachi Amor ◽  
Gaëtan Didier ◽  
Farid Hamoudi

Multi-terminal DC network (MTDC) offers great potential for long distance huge power delivery with multi-direction power transmission capability. However, the key obstacle in a realization of MTDC is the lack of existing commercial protection device can withstand the DC fault that rises rapidly and surge tenfold within several milliseconds over the whole system. The new technology called Superconducting Fault Current Limiter (SFCL) could bring a solution to the main bottleneck of the MTDC networks. In this work, an electro-thermal model of resistive type SFCL in series with a hybrid DC circuit breaker is proposed to protect a five terminal MTDC network. The numerical analysis carried out using (EMTP-RV®) software, and the simulation results show how effectively the SFCL can reduce the fault current and increase the breaking capability. Moreover, system stability is remarkably improved.


2021 ◽  
Vol 23 (6) ◽  
pp. 455-466
Author(s):  
Margot G.L. ◽  
Corinne A. ◽  
Bruno A.

This paper presents a study about power profiles of micro-grid with highly intermittent sources and their impacts on energy storage system (ESS). The first step of the work consists in generating the ESS power profiles thanks to a new optimal sizing algorithm. Our approach allows to size the ESS and the renewable energy sources (RES) using a power/energy considerations to generate charging and discharging profiles regardless ESS specifics parameters. In a second step, we review the potential damages on Valves Regulated Lead Acid Batteries (VRLAB). This technology has been chosen because it is the most used ESS in case of stationary applications for urban MG with RES integration. We propose some criterion to quantify the batteries stresses generated by MG working operations. Therefore, we give recommendations to enhance the VRLAB lifetime in both micro-grid design and energy management. Our method has been applied to the photovoltaic production and lighting network consumption profiles of the LAAS-CNRS building integrated photovoltaic. We compare four possible configurations of ESS and RES: two determined thanks to Pareto optimisation method and two critical cases corresponding to the minimal and the maximal values of ESS size into all the possible configuration tested.


2021 ◽  
Vol 23 (5) ◽  
pp. 381-389
Author(s):  
Khalid H. Ibrahim ◽  
Nourhan R. Korany ◽  
Saber M. Saleh

The electric power transformer is an essential part of an electrical power system since it is used to step up or down voltage levels to maintain the system performance as well as possible. Frequency response analysis (FRA) is one of the most widely used techniques for detecting various types of mechanical damage in transformers. The equivalent circuit of the transformer will be represented by a complex network of R, L, and C elements in the FRA technique. For transformer faults diagnosis, various calculation techniques and diagnostic techniques may be used, such as acoustic emission analysis, thermal images of electromagnetic radiation, transformer temperature, and humidity analysis. SFRA test is one of these techniques that could be used to determine the fault type based on its response over a wide frequency range. The main challenge of the SFRA test is that the functional interpretation requirement for this test is not universally accepted Also statistical features are defined for this SFRA response to be used in fault detection and classification. In this paper, the effect of the transformer rating on the fault diagnosis techniques using SFRA is tested. Also, the effect of the transformer VA rating on the statistical parameters and the classification rules of fault diagnosis is discussed. Finally, the features used in fault diagnosis are ranked according to its independence of the transformer rating resulting in a more accurate matching fault diagnosis technique.


2021 ◽  
Vol 23 (5) ◽  
pp. 401-407
Author(s):  
M. Praful Yadav ◽  
P. Sujatha ◽  
P.B. Kumar

Reduction of fossil fuels and increasing technology made importance of wind generation as renewable energy sources. With increasing number of wind farms fed to grid increases grid fault issues due to various wind systems disconnected from grid during grid faults. To get better grid operation, wind farms are probable to be carried during disturbance related to grid faults extensively known as fault ride through capability. In proposed system a fault ride through method in wind farm management system connected to grid is investigated in term of critical clearing time. This paper examines the use of dynamic voltage restorer on the enhancement of fixed-speed wind generator systems. The controller capability performance, drive performance, and cost factor are considered. Simulation is performed using MATLAB Simulink for constant speed wind generators with closed-loop controller-based DVR are tested. The constant speed drive called synchronous generator-based wind system feed to an infinite bus system. Simulation results show the wind system with DVR has better fault ride-through capability other compensated voltages and is more efficient in minimizing voltage fluctuations called sag/swell and wind generator’s speed. Additionally, DVR aids wind generators to maintain voltage sag/swell with the grid limits requirements with economical as compared to other voltage compensating systems.


Sign in / Sign up

Export Citation Format

Share Document